Friday, May 3, 2024
Friday, May 3, 2024
HomePet NewsExotic Pet NewsThe very first description of dermal armour in snakes

The very first description of dermal armour in snakes

Date:

Related stories

-Advertisement-spot_img
-- Advertisment --
- Advertisement -
  • Vickaryous, M. K. & Sire, J. Y. The integumentary skeleton of tetrapods: Origin, development, and advancement. J. Anat. 214, 441–464. https://doi.org/10.1111/j.1469-7580.2008.01043.x (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zylberberg, L., Castanet, J. & Dericqles, A. Structure of the dermal scales in Gymnophiona (Amphibia). J. Morphol. 165, 41–54. https://doi.org/10.1002/jmor.1051650105 (1980).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zylberberg, L. & Wake, M. H. Structure of the scales of Dermophis and Microcaecilia (Amphibia, Gymnophiona), and a contrast to dermal ossification of other vertebrates. J. Morphol. 206, 25–43. https://doi.org/10.1002/jmor.1052060104 (1990).

    Article 
    PubMed 

    Google Scholar 

  • Arun, D., Sandhya, S., Akbarsha, M. A., Oommen, O. V. & Divya, L. An insight into the skin glands, dermal scales and secretions of the caecilian amphibian Ichthyophis beddomei. Saudi J. Biol. Sci. 27, 2683–2690. https://doi.org/10.1016/j.sjbs.2020.06.009 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Toledo, R. C. & Jared, C. The calcified dermal layer in Anurans. Comp. Biochem. Physiol. Part A Physiol. 104, 443–448. https://doi.org/10.1016/0300-9629(93)90444-9 (1993).

    Article 

    Google Scholar 

  • Katchburian, E. et al. Mineralized dermal layer of the Brazilian tree-frog Corythomantis greeningi. J. Morphol. 248, 56–63. https://doi.org/10.1002/jmor.1020 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Delorme, S. & Vickaryous, M. K. Calcified integumentary structures in Anurans. Faseb J. 24, 634 (2010).

    Article 

    Google Scholar 

  • Gadow, H. Cambridge Natural History, Vol VIII: Amphibia and Reptiles (Hafner Publishing Company, 1901).

  • Francillon-Vieillot, H. et al. Microstructure and mineralization of vertebrate skeletal tissues. In Skeletal Biomineralization; Patterns, Processes and Evolutionary Trends (ed. Carter, J. G.) 471–548 (Van Nostrand Reinhold, 1990).

    Google Scholar 

  • de Ricqlès A, Pereda Suberbiola X., Gasparini Z, Olivero E. Histology of dermal ossifications in an ankylosaurian dinosaur from the Late Cretaceous of Antarctica in International Symposium on Mesozoic Terrestrial Ecosystems (ed. Leanza, H.A.) 171–174 (Asociación Paleontológica Argentina).

  • Main, R. P., de Ricqles, A., Horner, J. R. & Padian, K. The development and function of thyreophoran dinosaur scutes: Implications for plate function in stegosaurs. Paleobiology 31, 291–314. https://doi.org/10.1666/0094-8373(2005)031[0291:teafot]2.0.co;2 (2005).

    Article 

    Google Scholar 

  • Dilkes, D. & Brown, L. E. Biomechanics of the vertebrae and associated osteoderms of the Early Permian amphibian Cacops aspidephorus. J. Zool. 271, 396–407. https://doi.org/10.1111/j.1469-7998.2006.00221.x (2007).

    Article 

    Google Scholar 

  • Broeckhoven, C., du Plessis, A., le Roux, S. G., Mouton, P. L. N. & Hui, C. Beauty is more than skin deep: A non-invasive procedure for in vivo physiological research study utilizing micro-CT. Methods Ecol. Evol. 8, 358–369. https://doi.org/10.1111/2041-210x.12661 (2017).

    Article 

    Google Scholar 

  • Broeckhoven, C. & du Plessis, A. X-ray microtomography in herpetological research study: An evaluation. Amphibia-Reptilia 39, 377–401. https://doi.org/10.1163/15685381-20181102 (2018).

    Article 

    Google Scholar 

  • Hall, B. K. Bones and Cartilage: Developmental and Evolutionary Skeletal Biology (Elsevier Academic Press, 2015).

    Google Scholar 

  • Stanley, et al. An evaluation of Cordylus machadoi (Squamata: Cordylidae) in southwestern Angola, with the description of a brand-new types from the Pro-Namib desert. Zootaxa 4061(3), 201–226. https://doi.org/10.11646/zootaxa.4061.3.1 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Broeckhoven, C., de Kock, C. & Mouton, P. L. F. N. Sexual dimorphism in osteoderm expression and the function of male intrasexual aggressiveness. Biol. J. Linn. Soc. 122(2), 329–339. https://doi.org/10.1093/biolinnean/blx066 (2017).

    Article 

    Google Scholar 

  • Jarvik, E. Basic Structure and Evolution of Vertebrates Vol. 1 (Academic Press, 1980).

    Google Scholar 

  • Dias, E. V. & Richter, M. On the squamation of Australerpeton cosgriffi Barberena, a temnospondyl amphibian from the Upper Permian of Brazil. Ann. Acad. Bras. Cienc. 74, 477–490. https://doi.org/10.1590/s0001-37652002000300010 (2002).

    Article 

    Google Scholar 

  • Ruibal, R. & Shoemaker, V. Osteoderms in Anurans. J. Herpetol. 18, 313–328. https://doi.org/10.2307/1564085 (1984).

    Article 

    Google Scholar 

  • Zylberberg, L. & Castanet, J. New information on the structure and the development of the osteoderms in the reptile Anguis fragilis (Anguidae, Squamata). J. Morphol. 186, 327–342. https://doi.org/10.1002/jmor.1051860309 (1985).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Vickaryous, M. K., Meldrum, G. & Russell, A. P. Armored geckos: A histological examination of osteoderm advancement in Tarentola (Phyllodactylidae) and Gekko (Gekkonidae) with talk about their regrowth and presumed function. J. Morphol. 276, 1345–1357. https://doi.org/10.1002/jmor.20422 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Scheyer, T. M., Sander, P. M., Joyce, W. G., Boehme, W. & Witzel, U. A plywood structure in the shell of fossil and living soft-shelled turtles (Trionychidae) and its evolutionary ramifications. Org. Divers. Evol. 7, 136–144. https://doi.org/10.1016/j.ode.2006.03.002 (2007).

    Article 

    Google Scholar 

  • Sun, C. Y. & Chen, P. Y. Structural style and mechanical habits of alligator (Alligator mississippiensis) osteoderms. Acta Biomater. 9, 9049–9064. https://doi.org/10.1016/j.actbio.2013.07.016 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hill, R. V. Comparative anatomy and histology of xenarthran osteoderms. J. Morphol. 267, 1441–1460. https://doi.org/10.1002/jmor.10490 (2006).

    Article 
    PubMed 

    Google Scholar 

  • Vickaryous, M. K. & Hall, B. K. Osteoderm morphology and advancement in the nine-banded armadillo, Dasypus novemcinctus (Mammalia, Xenarthra, Cingulata). J. Morphol. 267, 1273–1283. https://doi.org/10.1002/jmor.10475 (2006).

    Article 
    PubMed 

    Google Scholar 

  • Scarano, A. C., Ciancio, M. R., Barbeito-Andres, J., Barbeito, C. G. & Krmpotic, C. M. Micromorphology of osteoderms in Dasypodidae (Cingulata, Mammalia): Characterization and 3D-reconstructions. J. Morphol. 281, 258–272. https://doi.org/10.1002/jmor.21096 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Hill, R. V. Integration of morphological information sets for phylogenetic analysis of amniota: The value of integumentary characters and increased taxonomic tasting. Syst. Biol 54, 530–547. https://doi.org/10.1080/10635150590950326 (2005).

    Article 
    PubMed 

    Google Scholar 

  • Williams, C. et al. An evaluation of the osteoderms of lizards (Reptilia: Squamata). Biol. Rev. 97, 1–19. https://doi.org/10.1111/brv.12788 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Vickaryous, M. K. & Hall, B. K. Development of the dermal skeleton in Alligator mississippiensis (Archosauria, crocodylia) with talk about the homology of osteoderms. J. Morphol. 269, 398–422. https://doi.org/10.1002/jmor.10575 (2008).

    Article 
    PubMed 

    Google Scholar 

  • Broeckhoven, C., du Plessis, A., Minne, B. & Van Damme, R. Evolutionary morphology of osteoderms in Squamates. J. Morphol. 280, S90–S90 (2019).

    Google Scholar 

  • Reynoso, V. H. A “beaded” sphenodontian (Diapsida: Lepidosauria) from the early Cretaceous of main Mexico. J. Vertebr. Paleontol. 17, 52–59. https://doi.org/10.1080/02724634.1997.10010953 (1997).

    Article 

    Google Scholar 

  • Paluh, D. J., Griffing, A. H. & Bauer, A. M. Sheddable armour: Identification of osteoderms in the integument of Geckolepis maculata (Gekkota). Afr. J. Herpetol. 66, 12–24. https://doi.org/10.1080/21564574.2017.1281172 (2017).

    Article 

    Google Scholar 

  • Laver, R. J. et al. The advancement of cephalic armor in the tokay gecko (Squamata: Gekkonidae: Gekko gecko). J. Morphol. 281, 213–228 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Paluh, D. J. & Bauer, A. M. Comparative skull anatomy of terrestrial and crevice-dwelling Trachylepis skinks (Squamata: Scincidae) with a study of resources in scincid cranial osteology. PLoS ONE https://doi.org/10.1371/journal.pone.0184414 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Costantini, D., Alonso, M. L., Moazen, M. & Bruner, E. The relationship in between cephalic scales and bones in lizards: An initial microtomographic study on 3 lacertid types. Anat. Rec. Adv. Integr. Anat. Evol. Biol. 293, 183–194. https://doi.org/10.1002/ar.21048 (2010).

    Article 

    Google Scholar 

  • Erickson, G. M., De Ricqles, A., De Buffrenil, V., Molnar, R. E. & Bayless, M. K. Vermiform bones and the development of gigantism in Megalania—How a reptilian fox ended up being a lion. J. Vertebr. Paleontol. 23, 966–970 (2003).

    Article 

    Google Scholar 

  • Iacoviello, F. et al. The multiscale hierarchical structure of Heloderma suspectum osteoderms and their mechanical residential or commercial properties. Acta Biomater. 107, 194–203. https://doi.org/10.1016/j.actbio.2020.02.029 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Maisano, J. A., Laduc, T. J., Bell, C. J. & Barber, D. The cephalic osteoderms of Varanus komodoensis as revealed by high-resolution X-ray calculated tomography. Anat. Rec. Adv. Integr. Anat. Evol. Biol. 302, 1675–1680. https://doi.org/10.1002/ar.24197 (2019).

    Article 

    Google Scholar 

  • Schucht, P. J., Ruhr, P. T., Geier, B., Glaw, F. & Lambertz, M. Armored with skin and bone: A combined histological and mu CT-study of the extraordinary integument of the Antsingy leaf chameleon Brookesia perarmata (Angel, 1933). J. Morphol. 281, 754–764. https://doi.org/10.1002/jmor.21135 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Zheng, Y. & Wiens, J. J. Combining phylogenomic and supermatrix methods, and a time-calibrated phylogeny for squamate reptiles (lizards and snakes) based upon 52 genes and 4162 types. Mol. Phylogenet. Evol. 94, 537–547. https://doi.org/10.1016/j.ympev.2015.10.009 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Levrat-Calviac, V., Castanet, J. & Zylberberg, L. The structure of the osteoderms in 2 lizards. In Tarentola mauritanica and Anguis fragilis in Studies in Herpetology: Proceedings of the European Herpetological Meeting (ed. Roček, Z.) 341–344 (Prague Charles University, 1986).

    Google Scholar 

  • Broeckhoven, C., El Adak, Y., Hui, C., Van Damme, R. & Stankowich, T. On hazardous ground: The development of body armour in cordyline lizards. Proc. Roy. Soc. B Biol. Sci. 285, 10. https://doi.org/10.1098/rspb.2018.0513 (2018).

    Article 

    Google Scholar 

  • Broeckhoven, C., du Plessis, A. & Hui, C. Functional compromise in between strength and thermal capability of dermal armor: Insights from girdled lizards. J. Mech. Behav. Biomed. Mat. 74, 189–194. https://doi.org/10.1016/j.jmbbm.2017.06.007 (2017).

    Article 

    Google Scholar 

  • Broeckhoven, C., Mouton, P. & Hui, C. Proximate reason for variation in dermal armour: Insights from armadillo lizards. Oikos 127, 1449–1458. https://doi.org/10.1111/oik.05401 (2018).

    Article 

    Google Scholar 

  • Frydlova, P. et al. Patterns of development in display lizards (Varanidae) as revealed by computed tomography of femoral development plates. Zoomorphology 136, 95–106. https://doi.org/10.1007/s00435-016-0338-3 (2017).

    Article 

    Google Scholar 

  • Frydlova, P. et al. Universality of indeterminate development in lizards turned down: The micro-CT exposes contrasting timing of development cartilage perseverance in iguanas, agamas, and chameleons. Sci. Rep. 9, 14. https://doi.org/10.1038/s41598-019-54573-5 (2019).

    Article 
    CAS 

    Google Scholar 

  • Frydlova, P. et al. Determinate development is primary and most likely ancestral in squamate reptiles. Proc. Roy. Soc. B Biol. Sci. 287, 8. https://doi.org/10.1098/rspb.2020.2737 (2020).

    Article 

    Google Scholar 

  • Shu, G. C. et al. A fast, non-invasive technique for physiological observations of tadpole vertebrae in vivo. Asian Herpetol. Res. 9, 99–109. https://doi.org/10.16373/j.cnki.ahr.180003 (2018).

    Article 

    Google Scholar 

  • Buchwitz, M. & Voigt, S. Peculiar carapace structure of a Triassic chroniosuchian indicates evolutionary shift in trunk versatility. J. Vertebr. Paleontol. 30, 1697–1708. https://doi.org/10.1080/02724634.2010.521685 (2010).

    Article 

    Google Scholar 

  • Farlow, J. O., Hayashi, S. & Tattersall, G. J. Internal vascularity of the dermal plates of Stegosaurus (Ornithischia, Thyreophora). Swiss J. Geosci. 103, 173–185. https://doi.org/10.1007/s00015-010-0021-5 (2010).

    Article 

    Google Scholar 

  • Dacke, C. G. et al. Alligator osteoderms as a source of labile calcium for eggshell development. J. Zool. 297, 255–264. https://doi.org/10.1111/jzo.12272 (2015).

    Article 

    Google Scholar 

  • Uetz, P., Freed, P., Aguilar, R., & Hošek, J. (eds.). The Reptile Database http://www.reptile-database.org (2022).

  • Losos, J. B., Mouton, P. L. F. N., Bickel, R., Cornelius, I. & Ruddock, L. The result of body armature on escape behaviour in cordylid lizards. Anim. Behav. 64(2), 313–321. https://doi.org/10.1006/anbe.2002.3051 (2002).

    Article 

    Google Scholar 

  • Kéver, L. et al. Biomechanical behaviour of lizard osteoderms and skin under external loading. J. Exp. Biol. 225(20), 244551. https://doi.org/10.1242/jeb.244551 (2022).

    Article 

    Google Scholar 

  • Greene, H. Defensive tail display screen by snakes and amphisbaenians. J. Herpetol. 143–161 (1973).

  • Lillywhite, H. How Snakes Work: Structure, Function and Behavior of the World’s Snakes (Oxford University Press, 2014).

    Google Scholar 

  • O’Shea, M. The Book of Snakes: A Life-Size Guide to Six Hundred Species from Around the World (University of Chicago Press, 2018).

    Book 

    Google Scholar 

  • Sood, M. The caudal vertebræ of Eryx johnii (Russell). Vol. 14 (Springer India, 1941).

  • Szyndlar, Z. & Schleich, H. Two types of the genus Eryx (Serpentes; Boidae; Erycinae) from the Spanish Neogene with talk about the previous circulation of the genus in Europe. Amphibia-Reptilia 15, 233–248 (1994).

    Article 

    Google Scholar 

  • Reynolds, R. G., Niemiler, M. L. & Revell, L. J. Toward a tree-of-life for the boas and pythons: Multi locus species-level phylogeny with unmatched taxon tasting. Mol. Phylogenet. Evol. 71, 201–213. https://doi.org/10.1016/j.ympev.2013.11.011 (2014).

    Article 

    Google Scholar 

  • Bever, G. S., Bell, C. J. & Maisano, J. A. The ossified braincase and cephalic osteoderms of Shinisaurus crocodilurus (Squamata, Shinisauridae). Palaeontol. Electron. 8, 1–36 (2005).

    Google Scholar 

  • Hoyer, R. Description of a Rubber Boa (Charina bottae) population from western Oregon. Herpetologica 30, 275–283 (1974).

    Google Scholar 

  • Rodriguez-Robles, J. A., Bell, C. J. & Greene, H. W. Gape size and development of diet plan in snakes: Feeding ecology of erycine boas. J. Zool. 248, 49–58 (1999).

    Article 

    Google Scholar 

  • Cyriac, V. P. & Kodandaramaiah, U. Digging their own macroevolutionary tomb: Fossoriality as an evolutionary dead end in snakes. J. Evol. Biol. 31, 587–598. https://doi.org/10.1111/jeb.13248 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Landová, E., Musilová, V., Polák, J., Sedláčková, K. & Frynta, D. Antipredatory response of the leopard gecko Eublepharis macularius to snake predators. Cur. Zool. 62(5), 439–450. https://doi.org/10.1093/cz/zow050 (2016).

    Article 

    Google Scholar 

  • Gans, C. Studies on amphisbaenids (Amphisbaenia, Reptilia). 1. A taxonomic modification of the Trogonophinae, and a practical analysis of the amphisbaenid adaptive pattern. Bull. Am. Mus. Nat. Hist. 119, 129–204 (1960).

    Google Scholar 

  • Klein, M. C. G., Deuschle, J. K. & Gorb, S. N. Material residential or commercial properties of the skin of the Kenyan sand boa Gongylophis colubrinus (Squamata, Boidae). J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 196, 659–668. https://doi.org/10.1007/s00359-010-0556-y (2010).

    Article 
    PubMed 

    Google Scholar 

  • Klein, M. C. G. & Gorb, S. N. Scratch resistance of the forward skin surface area in 4 snake types (Squamata, Serpentes). Zoology 119, 81–96. https://doi.org/10.1016/j.zool.2015.12.006 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Smith, K. T. & Scanferla, A. An almost total skeleton of the oldest conclusive erycine boid (Messel, Germany). Geodiversitas 43, 1–24. https://doi.org/10.5252/geodiversitas2021v43a1 (2021).

    Article 

    Google Scholar 

  • Da Silva, M. A. O. et al. Morphology of the snake phenomenon shows its evolutionary adjustment and advancement. BMC Vet. Res. https://doi.org/10.1186/s12917-017-1193-2 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Roscito, J. G. & Rodrigues, M. T. Comparative cranial osteology of fossorial lizards from the people Gymnophthalmini (Squamata, Gymnophthalmidae). J. Morphol. 271, 1352–1365. https://doi.org/10.1002/jmor.10878 (2010).

    Article 
    PubMed 

    Google Scholar 

  • Olori, J. C. & Bell, C. J. Comparative skull morphology of uropeltid snakes (Alethinophidia: Uropeltidae) with unique recommendation to disarticulated aspects and variation. PLoS ONE https://doi.org/10.1371/journal.pone.0032450 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Andrews, R. M., Pough, F. H., Collazo, A. & Dequeiroz, A. The environmental cost of morphological expertise—Feeding by a fossorial lizard. Oecologia 73, 139–145. https://doi.org/10.1007/bf00376990 (1987).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Vanhooydonck, B., Boistel, R., Fernandez, V. & Herrel, A. Push and bite: Trade-offs in between burrowing and biting in a burrowing skink (Acontias percivali). Biol. J. Linn. Soc. 102, 91–99. https://doi.org/10.1111/j.1095-8312.2010.01563.x (2011).

    Article 

    Google Scholar 

  • Rage, J. C. Erycine snake (Boidae) of genus Calamagras from French lower Eocene, with talk about phylogeny of Erycine. Herpetologica 33, 459–463 (1977).

    Google Scholar 

  • Kluge, A. G. Calabaria and the phylogeny of Erycine snakes. Zool. J. Linn. Soc 107, 293–351. https://doi.org/10.1111/j.1096-3642.1993.tb00290.x (1993).

    Article 

    Google Scholar 

  • Szyndlar, Z. Snakes from the lower Miocene area of Dolnice (Czechoslovakia). J. Vertebr. Paleontol. 7(1), 55–71. https://doi.org/10.1080/02724634.1987.10011637 (1987).

    Article 

    Google Scholar 

  • Pyron, R. A., Burbrink, F. T. & Wiens, J. J. A phylogeny and modified category of Squamata, consisting of 4161 types of lizards and snakes. BMC Evol. Biol. https://doi.org/10.1186/1471-2148-13-93 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tonini, J. F. R., Beard, K. H., Ferreira, R. B., Jetz, W. & Pyron, R. A. Fully-tested phylogenies of squamates reveal evolutionary patterns in danger status. Biol. Conserv. 204, 23–31. https://doi.org/10.1016/j.biocon.2016.03.039 (2016).

    Article 

    Google Scholar 

  • Eskandarzadeh, N. et al. Revised category of the genus Eryx Daudin, 1803 (Serpentes: Erycidae) in Iran and neighbouring locations, based upon mtDNA series and morphological information. Herpetol. J 30, 2–12. https://doi.org/10.33256/hj30.1.212 (2020).

    Article 

    Google Scholar 

  • Han, D. W. & Young, B. A. The rhinoceros amongst Serpents: Comparative anatomy and speculative biophysics of Calabar burrowing python (Calabaria reinhardtii) skin. J. Morphol. 279, 86–96. https://doi.org/10.1002/jmor.20756 (2018).

    Article 
    PubMed 

    Google Scholar 

  • MorphoSource.org. https://www.morphosource.org/ (2022).

  • Reynolds, R. & Henderson, R. Boas of the world (Superfamily Booidae): A list with organized, taxonomic, and preservation evaluations. Bull. Mus. Comp. Zool. 162, 1–58 (2018).

    Article 

    Google Scholar 

  • Shine, R. & Charnov, E. L. Patterns of survival, development, and maturation in snakes and lizards. Am. Nat. 139(6), 1257–1269. https://doi.org/10.1086/285385 (1992).

    Article 

    Google Scholar 

  • Dudák, J., Žemlička, J., Mrzílková, J., Zach, P. & Holcová, K. Applicability of large-area single-photon counting detectors Timepix for high-resolution and high-contrast X-ray imaging of biological samples. IEEE Trans. Nucl. Sci. https://doi.org/10.1109/TNS.2022.3140396 (2022).

    Article 

    Google Scholar 

  • Object Research Systems (ORS) Inc (Montreal, Canada, 2021).

  • Verdenius, H. H. W. & Alma, L. A quantitative research study of decalcification approaches in histology. J. Clin. Pathol. 11, 229–236. https://doi.org/10.1136/jcp.11.3.229 (1958).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mesquite: A modular system for evolutionary analysis v. 3.7.0 (2021).

  • - Advertisement -
    Pet News 2Day
    Pet News 2Dayhttps://petnews2day.com
    About the editor Hey there! I'm proud to be the editor of Pet News 2Day. With a lifetime of experience and a genuine love for animals, I bring a wealth of knowledge and passion to my role. Experience and Expertise Animals have always been a central part of my life. I'm not only the owner of a top-notch dog grooming business in, but I also have a diverse and happy family of my own. We have five adorable dogs, six charming cats, a wise old tortoise, four adorable guinea pigs, two bouncy rabbits, and even a lively flock of chickens. Needless to say, my home is a haven for animal love! Credibility What sets me apart as a credible editor is my hands-on experience and dedication. Through running my grooming business, I've developed a deep understanding of various dog breeds and their needs. I take pride in delivering exceptional grooming services and ensuring each furry client feels comfortable and cared for. Commitment to Animal Welfare But my passion extends beyond my business. Fostering dogs until they find their forever homes is something I'm truly committed to. It's an incredibly rewarding experience, knowing that I'm making a difference in their lives. Additionally, I've volunteered at animal rescue centers across the globe, helping animals in need and gaining a global perspective on animal welfare. Trusted Source I believe that my diverse experiences, from running a successful grooming business to fostering and volunteering, make me a credible editor in the field of pet journalism. I strive to provide accurate and informative content, sharing insights into pet ownership, behavior, and care. My genuine love for animals drives me to be a trusted source for pet-related information, and I'm honored to share my knowledge and passion with readers like you.
    -Advertisement-

    Latest Articles

    -Advertisement-

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here
    Captcha verification failed!
    CAPTCHA user score failed. Please contact us!