Friday, May 3, 2024
Friday, May 3, 2024
HomePet NewsCats NewsSingle-haplotype comparative genomics supplies insights into lineage-specific structural variation throughout cat evolution...

Single-haplotype comparative genomics supplies insights into lineage-specific structural variation throughout cat evolution – Nature Genetics

Date:

Related stories

-Advertisement-spot_img
-- Advertisment --
- Advertisement -
  • Kronenberg, Z. N. et al. High-resolution comparative evaluation of nice ape genomes. Science 360, eaar6343 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rhie, A. et al. Towards full and error-free genome assemblies of all vertebrate species. Nature 592, 737–746 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nurk, S. et al. The full sequence of a human genome. Science 376, 44–53 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Miga, Ok. H. et al. Telomere-to-telomere meeting of a whole human X chromosome. Nature 585, 79–84 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Logsdon, G. A. et al. The construction, perform and evolution of a whole human chromosome 8. Nature 593, 101–107 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sedlazeck, F. J., Lee, H., Darby, C. A. & Schatz, M. C. Piercing the darkish matter: bioinformatics of long-range sequencing and mapping. Nat. Rev. Genet. 19, 329–346 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ahmad, S. F. et al. Dark matter of primate genomes: satellite tv for pc DNA repeats and their evolutionary dynamics. Cells 9, 2714 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Johnson, W. E. et al. The late Miocene radiation of recent Felidae: a genetic evaluation. Science 311, 73–77 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Li, G., Davis, B. W., Eizirik, E. & Murphy, W. J. Phylogenomic proof for historic hybridization within the genomes of dwelling cats (Felidae). Genome Res. 26, 1–11 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, G., Figueiró, H. V., Eizirik, E. & Murphy, W. J. Recombination-aware phylogenomics reveals the structured genomic panorama of hybridizing cat species. Mol. Biol. Evol. 36, 2111–2126 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dobrynin, P. et al. Genomic legacy of the African cheetah, Acinonyx jubatus. Genome Biol. 16, 277 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Abascal, F. et al. Extreme genomic erosion after recurrent demographic bottlenecks within the extremely endangered Iberian lynx. Genome Biol. 17, 251 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Johnson, W. E. et al. Genetic restoration of the Florida panther. Science 329, 1641–1645 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Montague, M. J. et al. Comparative evaluation of the home cat genome reveals genetic signatures underlying feline biology and domestication. Proc. Natl Acad. Sci. USA 111, 17230–17235 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Koren, S. et al. De novo meeting of haplotype-resolved genomes with trio binning. Nat. Biotechnol. 36, 1174–1182 (2018).

    Article 
    CAS 

    Google Scholar 

  • Cho, Y. S. et al. The tiger genome and comparative evaluation with lion and snow leopard genomes. Nat. Commun. 4, 2433 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Buckley, R. M. et al. A brand new home cat genome meeting based mostly on lengthy sequence reads empowers feline genomic drugs and identifies a novel gene for dwarfism. PLoS Genet. 16, e1008926 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bredemeyer, Ok. R., Harris, A. J., Li, G. & Zhao, L. Ultracontinuous single haplotype genome assemblies for the home cat (Felis catus) and Asian leopard cat (Prionailurus bengalensis). J. Hered. 197, 165–173 (2021).

    Article 

    Google Scholar 

  • Meyne, J., Ratliff, R. L. & Moyzis, R. Ok. Conservation of the human telomere sequence (TTAGGG)n amongst vertebrates. Proc. Natl Acad. Sci. USA 86, 7049–7053 (1989).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Peska, V. & Garcia, S. Origin, variety, and evolution of telomere sequences in vegetation. Front. Plant Sci. 11, 117 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fanning, T. G. Origin and evolution of a serious feline satellite tv for pc DNA. J. Mol. Biol. 197, 627–634 (1987).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Santos, S., Chaves, R. & Guedes-Pinto, H. Chromosomal localization of the most important satellite tv for pc DNA household (FA-SAT) within the home cat. Cytogenet. Genome Res. 107, 119–122 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wurster-Hill, D. H. & Centerwall, W. R. The interrelationships of chromosome banding patterns in canids, mustelids, hyena, and felids. Cytogenet. Cell Genet. 34, 178–192 (1982).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bailey, J. A., Baertsch, R., Kent, W. J., Haussler, D. & Eichler, E. E. Hotspots of mammalian chromosomal evolution. Genome Biol. 5, R23 (2004).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Marques-Bonet, T., Ryder, O. A. & Eichler, E. E. Sequencing primate genomes: what have we discovered? Annu. Rev. Genomics Hum. Genet. 10, 355–386 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cantsilieris, S. et al. An evolutionary driver of interspersed segmental duplications in primates. Genome Biol. 21, 202 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mao, Y. et al. A high-quality bonobo genome refines the evaluation of hominid evolution. Nature 594, 77–81 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Numanagic, I. et al. Fast characterization of segmental duplications in genome assemblies. Bioinformatics 34, i706–i714 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vollger, M. R. et al. Segmental duplications and their variation in a whole human genome. Science 376, eabj6965 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Charlesworth, D. & Charlesworth, B. Sex chromosomes: evolution of the bizarre. Curr. Biol. 15, R129–R131 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Larson, E. L., Keeble, S., Vanderpool, D., Dean, M. D. & Good, J. M. The composite regulatory foundation of the massive X-effect in mouse speciation. Mol. Biol. Evol. 34, 282–295 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Charlesworth, B., Coyne, J. A. & Barton, N. H. The relative charges of evolution of intercourse chromosomes and autosomes. Am. Nat. 130, 113–146 (1987).

    Article 

    Google Scholar 

  • Cheng, C. & Kirkpatrick, M. Inversions are greater on the X chromosome. Mol. Ecol. 28, 1238–1245 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Figueiró, H. V. et al. Genome-wide signatures of advanced introgression and adaptive evolution within the huge cats. Sci. Adv. 3, e1700299 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ferree, P. M. & Prasad, S. How can satellite tv for pc DNA divergence trigger reproductive isolation? Let us rely the chromosomal methods. Genet. Res. Int. 2012, 430136 (2012).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Bayes, J. J. & Malik, H. S. Altered heterochromatin binding by a hybrid sterility protein in Drosophila sibling species. Science 326, 1538–1541 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bredemeyer, Ok. R. et al. Rapid macrosatellite evolution promotes X-linked hybrid male sterility in a Feline interspecies cross. Mol. Biol. Evol. 38, 5588–5609 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Figueroa, D. M., Darrow, E. M. & Chadwick, B. P. Two novel DXZ4-associated lengthy noncoding RNAs present developmental adjustments in expression coincident with heterochromatin formation on the human (Homo sapiens) macrosatellite repeat. Chromosome Res. 23, 733–752 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dossin, F. & Heard, E. The molecular and nuclear dynamics of X-chromosome inactivation. Cold Spring Harb. Perspect. Biol. 14, a040196 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Bonora, G. et al. Orientation-dependent Dxz4 contacts form the 3D construction of the inactive X chromosome. Nat. Commun. 9, 1445 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vollger, M. R., Kerpedjiev, P., Phillippy, A. M. & Eichler, E. E. StainedGlass: interactive visualization of large tandem repeat buildings with identification heatmaps. Bioinformatics 38, 2049–2051 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Horakova, A. H. et al. The mouse DXZ4 homolog retains Ctcf binding and proximity to Pls3 regardless of substantial organizational variations in comparison with the primate macrosatellite. Genome Biol. 13, R70 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Froberg, J. E., Pinter, S. F., Kriz, A. J., Jégu, T. & Lee, J. T. Megadomains and superloops kind dynamically however are dispensable for X-chromosome inactivation and gene escape. Nat. Commun. 9, 5004 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brashear, W. A., Bredemeyer, Ok. R. & Murphy, W. J. Genomic structure constrained placental mammal X chromosome evolution. Genome Res. 31, 1353–1365 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Andergassen, D. et al. In vivo Firre and Dxz4 deletion elucidates roles for autosomal gene regulation. eLife 8, e47214 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Abe, H. et al. Active DNA harm response signaling initiates and maintains meiotic intercourse chromosome inactivation. Nat. Commun. 13, 7212 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Abe, H. et al. The initiation of meiotic intercourse chromosome inactivation sequesters DNA harm signaling from autosomes in mouse spermatogenesis. Curr. Biol. 30, 408–420 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Altemose, N. et al. Complete genomic and epigenetic maps of human centromeres. Science 376, eabl4178 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Carbone, L. et al. Evolutionary motion of centromeres in horse, donkey, and zebra. Genomics 87, 777–782 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Raudsepp, T., Finno, C. J., Bellone, R. R. & Petersen, J. L. Ten years of the horse reference genome: insights into equine biology, domestication and inhabitants dynamics within the post-genome period. Anim. Genet. 50, 569–597 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Henikoff, S., Ahmad, Ok. & Malik, H. S. The centromere paradox: steady inheritance with quickly evolving DNA. Science 293, 1098–1102 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Young, J. M. & Trask, B. J. The sense of scent: genomics of vertebrate odorant receptors. Hum. Mol. Genet. 11, 1153–1160 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hayden, S. et al. Ecological adaptation determines useful mammalian olfactory subgenomes. Genome Res. 20, 1–9 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hughes, G. M. et al. The delivery and demise of olfactory receptor gene households in mammalian area of interest adaptation. Mol. Biol. Evol. 35, 1390–1406 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Carroll, R. A. et al. A novel fishing cat reference genome for the analysis of potential germline danger variants. Preprint at bioRxiv (2022).

  • Sunquist, M. & Sunquist, F. Wild Cats of the World (Univ. Chicago Press, 2017).

  • Nel, J. A. J. Handbook of the Mammals of the World, Vol. 1: Carnivores (Lynx Edicions, 2009).

  • Dunkel, A. et al. Nature’s chemical signatures in human olfaction: a foodborne perspective for future biotechnology. Angew. Chem. Int. Ed. 53, 7124–7143 (2014).

    Article 
    CAS 

    Google Scholar 

  • Moran, Y., Barzilai, M. G., Liebeskind, B. J. & Zakon, H. H. Evolution of voltage-gated ion channels on the emergence of Metazoa. J. Exp. Biol. 218, 515–525 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Nei, M. & Rooney, A. P. Concerted and birth-and-death evolution of multigene households. Annu. Rev. Genet. 39, 121–152 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhao, J., Teufel, A. I., Liberles, D. A. & Liu, L. A generalized delivery and demise course of for modeling the fates of gene duplication. BMC Evol. Biol. 15, 275 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Newman, T. & Trask, B. J. Complex evolution of 7E olfactory receptor genes in segmental duplications. Genome Res. 13, 781–793 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Niimura, Y., Matsui, A. & Touhara, Ok. Corrigendum: excessive enlargement of the olfactory receptor gene repertoire in African elephants and evolutionary dynamics of orthologous gene teams in 13 placental mammals. Genome Res. 25, 926 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Soso, S. B. & Koziel, J. A. Characterizing the scent and chemical composition of Panthera leo marking fluid utilizing solid-phase microextraction and multidimensional gasoline chromatography–mass spectrometry-olfactometry. Sci. Rep. 7, 5137 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nosil, P. & Feder, J. L. Genomic divergence throughout speciation: causes and penalties. Phil. Trans. R. Soc. B 367, 332–342 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Miga, Ok. H. & Sullivan, B. A. Expanding research of chromosome construction and performance within the period of T2T genomics. Hum. Mol. Genet. 30, R198–R205 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wold, J. et al. Expanding the conservation genomics toolbox: incorporating structural variants to boost genomic research for species of conservation concern. Mol. Ecol. 30, 5949–5965 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Formenti, G. et al. The period of reference genomes in conservation genomics. Trends Ecol. Evol. 37, 197–202 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mérot, C., Oomen, R. A., Tigano, A. & Wellenreuther, M. A roadmap for understanding the evolutionary significance of structural genomic variation. Trends Ecol. Evol. 35, 561–572 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Lovell, J. T. et al. GENESPACE tracks areas of curiosity and gene copy quantity variation throughout a number of genomes. eLife 11, e78526 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, G. et al. A high-resolution SNP array-based linkage map anchors a brand new home cat draft genome meeting and supplies detailed patterns of recombination. G3 6, 1607–1616 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jégu, T., Aeby, E. & Lee, J. T. The X chromosome in area. Nat. Rev. Genet. 18, 377–389 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Menotti-Raymond, M. et al. A genetic linkage map of microsatellites within the home cat (Felis catus). Genomics 57, 9–23 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Menotti-Raymond, M. et al. Second-generation built-in genetic linkage/radiation hybrid maps of the home cat (Felis catus). J. Hered. 94, 95–106 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Miller, S. A., Dykes, D. D. & Polesky, H. F. A easy salting out process for extracting DNA from human nucleated cells. Nucleic Acids Res 16, 1215 (1988).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ramani, V. et al. Mapping 3D genome structure by in situ DNase Hi-C. Nat. Protoc. 11, 2104–2121 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Andrews, S. FastQC. A top quality management software for top throughput sequence information. (2010).

  • Koren, S. et al. Canu: scalable and correct long-read meeting through adaptive ok-mer weighting and repeat separation. Genome Res. 27, 722–736 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hu, J., Fan, J., Sun, Z. & Liu, S. NextPolish: a quick and environment friendly genome sharpening software for long-read meeting. Bioinformatics 36, 2253–2255 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mikheenko, A., Prjibelski, A., Saveliev, V., Antipov, D. & Gurevich, A. Versatile genome meeting analysis with QUAST-LG. Bioinformatics 34, i142–i150 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome meeting and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Marçais, G. et al. MUMmer4: a quick and versatile genome alignment system. PLoS Comput. Biol. 14, e1005944 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, H. & Durbin, R. Fast and correct quick learn alignment with Burrows–Wheeler rework. Bioinformatics 25, 1754–1760 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rice, E. S. et al. Continuous chromosome-scale haplotypes assembled from a single interspecies F1 hybrid of yak and cattle. Gigascience 9, giaa029 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ghurye, J., Pop, M., Koren, S., Bickhart, D. & Chin, C.-S. Scaffolding of lengthy learn assemblies utilizing lengthy vary contact info. BMC Genomics 18, 527 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ghurye, J. et al. Integrating Hi-C hyperlinks with meeting graphs for chromosome-scale meeting. PLoS Comput. Biol. 15, e1007273 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dudchenko, O. et al. De novo meeting of the Aedes aegypti genome utilizing Hi-C yields chromosome-length scaffolds. Science 356, 92–95 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Alonge, M. et al. RaGOO: quick and correct reference-guided scaffolding of draft genomes. Genome Biol. 20, 224 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Durand, N. C. et al. Juicer supplies a one-click system for analyzing loop-resolution Hi-C experiments. Cell Syst. 3, 95–98 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Robinson, J. T. et al. Juicebox.js supplies a cloud-based visualization system for Hi-C information. Cell Syst. 6, 256–258 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Seibt, Ok. M., Schmidt, T. & Heitkam, T. FlexiDot: extremely customizable, ambiguity-aware dotplots for visible sequence analyses. Bioinformatics 34, 3575–3577 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Horakova, A. H., Moseley, S. C., McLaughlin, C. R., Tremblay, D. C. & Chadwick, B. P. The macrosatellite DXZ4 mediates CTCF-dependent long-range intrachromosomal interactions on the human inactive X chromosome. Hum. Mol. Genet. 21, 4367–4377 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chadwick, B. P. DXZ4 chromatin adopts an opposing conformation to that of the encircling chromosome and acquires a novel inactive X-specific function involving CTCF and antisense transcripts. Genome Res. 18, 1259–1269 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stamatakis, A. RAxML model 8: a software for phylogenetic evaluation and post-analysis of huge phylogenies. Bioinformatics 30, 1312–1313 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Maddison, W. P. & Maddison, D. R. Mesquite: a modular system for evolutionary evaluation, v. 3.61. (2019).

  • Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, Ok. MEGA X: molecular evolutionary genetics evaluation throughout computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Harris, A. J., Foley, N. M., Williams, T. L. & Murphy, W. J. Tree home explorer: a novel genome browser for phylogenomics. Mol. Biol. Evol. 39, msac130 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Murphy, W. J., Foley, N. M., Bredemeyer, Ok. R., Gatesy, J. & Springer, M. S. Phylogenomics and the genetic structure of the placental mammal radiation. Annu. Rev. Anim. Biosci. 9, 29–53 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • O’Brien, S. J., Graphodatsky, A. S. & Perelman, P. L. Atlas of Mammalian Chromosomes (John Wiley & Sons, 2020).

  • Flynn, J. M. et al. RepeatModeler2 for automated genomic discovery of transposable aspect households. Proc. Natl Acad. Sci. USA 117, 9451–9457 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vlahovic, I. et al. Global repeat map algorithm (GRM) reveals variations in α satellite tv for pc variety of tandem and better order repeats (HORs) in human, Neanderthal and chimpanzee genomes—novel tandem repeat database. In Proc. 2020 forty third International Convention on Information, Communication and Electronic Technology (MIPRO) (IEEE, 2020).

  • Olson, D. & Wheeler, T. ULTRA: a mannequin based mostly software. detect tandem repeats. ACM BCB 2018, 37–46 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Davis, B. W. et al. A high-resolution cat radiation hybrid and built-in FISH mapping useful resource for phylogenomic research throughout Felidae. Genomics 93, 299–304 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kent, J. W. BLAT—the BLAST-like alignment software. Genome Res. 12, 656–664 (2002).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Murphy, W. J. et al. A radiation hybrid map of the cat genome: implications for comparative mapping. Genome Res. 10, 691–702 (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Erdman, C. bcp: a bundle for performing a Bayesian evaluation of change level issues. R bundle model 1.8.4. (2007).

  • Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic native alignment search software. J. Mol. Biol. 215, 403–410 (1990).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Smit, A. F. A., Hubley, R. & Green, P. RepeatMasker Open-4.0. 2013–2015. (2015).

  • Eddy, S. R. Accelerated profile HMM searches. PLoS Comput. Biol. 7, e1002195 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nguyen, L.-T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a quick and efficient stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sievers, F. et al. Fast, scalable era of high-quality protein a number of sequence alignments utilizing Clustal Omega. Mol. Syst. Biol. 7, 539 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, Ok., Durand, D. & Farach-Colton, M. NOTUNG: a program for relationship gene duplications and optimizing gene household timber. J. Comput. Biol. 7, 429–447 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Paradis, E. & Schliep, Ok. ape 5.0: an setting for contemporary phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • García-Alcalde, F. et al. Qualimap: evaluating next-generation sequencing alignment information. Bioinformatics 28, 2678–2679 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Van der Auwera, G. A. et al. From FastQ information to excessive confidence variant calls: the Genome Analysis Toolkit greatest practices pipeline. Curr. Protoc. Bioinformatics 43, 11.10.1–11.10.33 (2013).

    PubMed 

    Google Scholar 

  • McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing information. Genome Res. 20, 1297–1303 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Adrion, J. R., Galloway, J. G. & Kern, A. D. Predicting the panorama of recombination utilizing deep studying. Mol. Biol. Evol. 37, 1790–1808 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kumar, S. & Subramanian, S. Mutation charges in mammalian genomes. Proc. Natl Acad. Sci. USA 99, 803–808 (2002).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ebert, P. et al. Haplotype-resolved various human genomes and built-in evaluation of structural variation. Science 372, eabf7117 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ren, J. & Chaisson, M. J. P. lra: an extended learn aligner for sequences and contigs. PLoS Comput. Biol. 17, e1009078 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vollger, M. R. et al. Long-read sequence and meeting of segmental duplications. Nat. Methods 16, 88–94 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Smolka, M. et al. Comprehensive structural variant detection: from mosaic to population-level. Preprint at bioRxiv (2022).

  • Sedlazeck, F. J. et al. Accurate detection of advanced structural variations utilizing single-molecule sequencing. Nat. Methods 15, 461–468 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Quinlan, A. R. & Hall, I. M. BEDTools: a versatile suite of utilities for evaluating genomic options. Bioinformatics 26, 841–842 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ebler, J. et al. Pangenome-based genome inference permits environment friendly and correct genotyping throughout a large spectrum of variant courses. Nat. Genet. 54, 518–525 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shen, W., Le, S., Li, Y. & Hu, F. SeqKit: a cross-platform and ultrafast toolkit for FASTA/Q file manipulation. PLoS ONE 11, e0163962 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dale, R. Ok., Pedersen, B. S. & Quinlan, A. R. Pybedtools: a versatile Python library for manipulating genomic datasets and annotations. Bioinformatics 27, 3423–3424 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Virtanen, P. et al. SciPy 1.0: basic algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cock, P. J. A. et al. Biopython: freely available Python instruments for computational molecular biology and bioinformatics. Bioinformatics 25, 1422–1423 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • - Advertisement -
    Pet News 2Day
    Pet News 2Dayhttps://petnews2day.com
    About the editor Hey there! I'm proud to be the editor of Pet News 2Day. With a lifetime of experience and a genuine love for animals, I bring a wealth of knowledge and passion to my role. Experience and Expertise Animals have always been a central part of my life. I'm not only the owner of a top-notch dog grooming business in, but I also have a diverse and happy family of my own. We have five adorable dogs, six charming cats, a wise old tortoise, four adorable guinea pigs, two bouncy rabbits, and even a lively flock of chickens. Needless to say, my home is a haven for animal love! Credibility What sets me apart as a credible editor is my hands-on experience and dedication. Through running my grooming business, I've developed a deep understanding of various dog breeds and their needs. I take pride in delivering exceptional grooming services and ensuring each furry client feels comfortable and cared for. Commitment to Animal Welfare But my passion extends beyond my business. Fostering dogs until they find their forever homes is something I'm truly committed to. It's an incredibly rewarding experience, knowing that I'm making a difference in their lives. Additionally, I've volunteered at animal rescue centers across the globe, helping animals in need and gaining a global perspective on animal welfare. Trusted Source I believe that my diverse experiences, from running a successful grooming business to fostering and volunteering, make me a credible editor in the field of pet journalism. I strive to provide accurate and informative content, sharing insights into pet ownership, behavior, and care. My genuine love for animals drives me to be a trusted source for pet-related information, and I'm honored to share my knowledge and passion with readers like you.
    -Advertisement-

    Latest Articles

    -Advertisement-

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here
    Captcha verification failed!
    CAPTCHA user score failed. Please contact us!