Friday, May 10, 2024
Friday, May 10, 2024
HomePet Industry NewsPet Travel NewsUnveiling the contourite depositional system within the Vema Fracture Zone (Central Atlantic)

Unveiling the contourite depositional system within the Vema Fracture Zone (Central Atlantic)

Date:

Related stories

-Advertisement-spot_img
-- Advertisment --
- Advertisement -
  • Massé, L., Faugères, J.-C., Bernat, M., Pujos, A. & Mézerais, M.-L. A 600,000-year report of Antarctic Bottom Water exercise inferred from sediment textures and buildings in a sediment core from the Southern Brazil Basin. Paleoceanography 9, 1017–1026 (1994).

    Article 
    ADS 

    Google Scholar
     

  • Hernández-Molina, F. J. et al. Giant mounded drifts within the Argentine Continental Margin: Origins, and world implications for the historical past of thermohaline circulation. Mar. Pet. Geol. 27, 1508–1530 (2010).

    Article 

    Google Scholar
     

  • Ivanova, E. et al. Late Pliocene–Pleistocene stratigraphy and historical past of formation of the Ioffe calcareous contourite drift, Western South Atlantic. Mar. Geol. 372, 17–30 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Ivanova, E., Borisov, D., Dmitrenko, O. & Murdmaa, I. Hiatuses within the late Pliocene-Pleistocene stratigraphy of the Ioffe calcareous contourite drift, western South Atlantic. Mar. Pet. Geol. 111, 624–637 (2020).

    Article 

    Google Scholar
     

  • Ivanova, E. V., Borisov, D. G., Murdmaa, I. O., Ovsepyan, E. A. & Stow, D. Contourite techniques across the northern exit from the Vema Channel. Mar. Geol. 449, 106835 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Sivkov, V. V., Bashirova, L. D., Dorokhova, E. V., Kapustina, M. V. & Ponomarenko, E. P. Study of the Contourite Drift north of the Kane Gap (japanese equatorial Atlantic). Russ. J. Earth Sci. 19, 1–9 (2019).

    Article 

    Google Scholar
     

  • Glazkova, T. et al. Sedimentary processes within the Discovery Gap (Central–NE Atlantic): An instance of a deep marine gateway. Deep Sea Res. Part I Oceanogr. Res. Pap. 180, 103681 (2022).

    Article 

    Google Scholar
     

  • Peive, A. A., Savel’eva, G. N., Skolotnev, S. G. & Simonov, V. A. Structure and Deformations of the Crust-Mantle Boundary Zone within the Vema Fracture Zone, Central Atlantic. Geotectonics 35, 12–29 (2001).


    Google Scholar
     

  • Ligi, M., Cuffaro, M., Muccini, F. & Bonatti, E. Generation and evolution of the oceanic lithosphere within the North Atlantic. La Riv. del Nuovo Cim. 45, 587–659 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kastens, Okay. et al. The Vema Transverse Ridge (Central Atlantic). Mar. Geophys. Res. 20, 533–556 (1998).

    Article 

    Google Scholar
     

  • Rebesco, M., Hernández-Molina, F. J., Van Rooij, D. & Wåhlin, A. Contourites and related sediments managed by deep-water circulation processes: State-of-the-art and future issues. Mar. Geol. 352, 111–154 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Thran, A. C., Dutkiewicz, A., Spence, P. & Müller, R. D. Controls on the worldwide distribution of contourite drifts: Insights from an eddy-resolving ocean mannequin. Earth Planet. Sci. Lett. 489, 228–240 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Flanders Marine Institute Renard Centre of Marine Geology Ugent. Global contourite distribution database, model 3 Citable as knowledge publication. (2019). https://doi.org/10.14284/346.

  • Westall, F., Rossi, S. & Mascle, J. Current-controlled sedimentation within the Equatorial Atlantic: Examples from the southern margin of the Guinea Plateau and the Romanche Fracture Zone. Sediment. Geol. 82, 157–171 (1993).

    Article 
    ADS 

    Google Scholar
     

  • McCartney, M. S., Bennett, S. L. & Woodgate-Jones, M. E. Eastward movement via the Mid-Atlantic Ridge at 11°N and Its Influence on the Abyss of the Eastern Basin. J. Phys. Oceanogr. 21, 1089–1121 (1991).

    Article 
    ADS 

    Google Scholar
     

  • Fischer, J., Rhein, M., Schott, F. & Stramma, L. Deep water lots and transports within the Vema Fracture Zone. Deep Sea Res. Part I Oceanogr. Res. Pap. 43, 1067–1074 (1996).

    Article 
    ADS 

    Google Scholar
     

  • Rhein, M., Stramma, L. & Krahmann, G. The spreading of Antarctic backside water within the tropical Atlantic. Deep Sea Res. Part I Oceanogr. Res. Pap. 45, 507–527 (1998).

    Article 
    ADS 

    Google Scholar
     

  • Demidov, A. N., Dobrolyubov, S. A., Morozov, E. G. & Tarakanov, R. Y. Transport of backside waters via the Vema Fracture Zone within the Mid-Atlantic ridge. Dokl. Earth Sci. 416, 1120–1124 (2007).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Morozov, E. G., Demidov, A. N., Tarakanov, R. Y. & Zenk, W. Abyssal Channels within the Atlantic Ocean (Springer Netherlands, 2010). https://doi.org/10.1007/978-90-481-9358-5.

  • Morozov, E. G., Tarakanov, R. Y., Frey, D. I., Demidova, T. A. & Makarenko, N. I. Bottom water flows within the tropical fractures of the Northern Mid-Atlantic Ridge. J. Oceanogr. 74, 147–167 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Heezen, B. C., Gerard, R. D. & Tharp, M. The Vema fracture zone within the equatorial Atlantic. J. Geophys. Res. 69, 733–739 (1964).

    Article 
    ADS 

    Google Scholar
     

  • Van Andel, T. H., Von Herzen, R. P. & Phillips, J. D. The Vema fracture zone and the tectonics of transverse shear zones in oceanic crustal plates. Mar. Geophys. Res. 1, 261–283 (1971).

    Article 

    Google Scholar
     

  • Deville, E. et al. Tectonics and sedimentation interactions within the east Caribbean subduction zone: An overview from the Orinoco delta and the Barbados accretionary prism. Mar. Pet. Geol. 64, 76–103 (2015).

    Article 

    Google Scholar
     

  • Morozov, E. G., Frey, D. I., Neiman, V. G., Makarenko, N. I. & Tarakanov, R. Y. Extreme transport velocities of Antarctic Bottom Water movement via the deep Vema Channel. Doklady Earth Sciences 486, 659–662 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kastens, Okay. A., Macdonald, Okay. C., Miller, S. P. & Fox, P. J. Deep tow research of the Vema Fracture Zone: 2. Evidence for tectonism and backside currents within the sediments of the remodel valley flooring. J. Geophys. Res. Solid Earth 91, 3355–3367 (1986).

    Article 

    Google Scholar
     

  • Eittreim, S. & Ewing, J. Vema fracture zone remodel fault. Geology 3, 555–558 (1975).

    Article 
    ADS 

    Google Scholar
     

  • Perch-Nielsen, Okay. et al. Site 353: Vema fracture zone. In Initial Reports of the Deep Sea Drilling Project, 39 (U.S. Government Printing Office, 1977). https://doi.org/10.2973/dsdp.proc.39.102.1977.

  • Shanmugam, G. 50 years of the turbidite paradigm (Nineteen Fifties–Nineties): Deep-water processes and facies fashions—A important perspective. Mar. Pet. Geol. 17, 285–342 (2000).

    Article 

    Google Scholar
     

  • Benson, W. E., Gerard, R. D. & Hay, W. W. Summary and conclusions. In Initial Reports of the Deep Sea Drilling Project, 4 (U.S. Government Printing Office, 1970). https://doi.org/10.2973/dsdp.proc.4.127.1970.

  • Lagabrielle, Y. et al. Vema Fracture Zone (central Atlantic): Tectonic and magmatic evolution of the median ridge and the japanese ridge-Transform intersection area. J. Geophys. Res. 97, 17331 (1992).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Uenzelmann-Neben, G. & Gohl, Okay. The Agulhas Ridge, South Atlantic: The peculiar construction of a fracture zone. Mar. Geophys. Res. 25, 305–319 (2004).

    Article 

    Google Scholar
     

  • Scrutton, R. A. & Stow, D. A. V. Seismic proof for Early Tertlary bottom-current managed deposition within the Charlie Gibbs Fracture Zone. Mar. Geol. 56, 325–334 (1984).

    Article 
    ADS 

    Google Scholar
     

  • Hernández-Molina, F. J. et al. Contourites and combined depositional techniques: A paradigm for deepwater sedimentary environments. In Deepwater Sedimentary Systems 301–360 (Elsevier, 2022). https://doi.org/10.1016/B978-0-323-91918-0.00004-9.

  • Bonatti, E. et al. Mantle thermal pulses beneath the Mid-Atlantic Ridge and temporal variations within the formation of oceanic lithosphere. Nature 423, 499–505 (2003).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Vangriesheim, A. Antarctic Bottom Water movement via the Vema Fracture Zone. Ocean. Acta 3, 199–207 (1980).


    Google Scholar
     

  • GEBCO Compilation Group. GEBCO_2022 Grid. (2022). https://doi.org/10.5285/e0f0bb80-ab44-2739-e053-6c86abc0289c.

  • Eittreim, S. L., Biscaye, P. E. & Jacobs, S. S. Bottom-water observations within the Vema fracture zone. J. Geophys. Res. 88, 2609 (1983).

    Article 
    ADS 

    Google Scholar
     

  • Demidov, A. N., Ivanov, A. A., Gippius, F. N. & Dobroliubov, S. A. Transport of deep and backside waters via the mid-Atlantic Ridge within the Vema Fracture Zone. Dokl. Earth Sci. 494, 735–740 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Morozov, E. G., Tarakanov, R. Y. & Frey, D. I. Bottom Gravity Currents and Overflows in Deep Channels of the Atlantic Ocean (Springer International Publishing, 2021). https://doi.org/10.1007/978-3-030-83074-8.

  • Bonatti, E. et al. Flexural uplift of a lithospheric slab close to the Vema remodel (Central Atlantic): Timing and mechanisms. Earth Planet. Sci. Lett. 240, 642–655 (2005).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Frey, D. I. et al. Multiple abyssal jets flowing into the Vema deep, Romanche fracture zone. J. Geophys. Res. Ocean. 128, (2023).

  • Richter, C., Valet, J.-P. & Solheid, P. A. Rock magnetic properties ofsediments from Ceara Rise (Site 929): Implications for the origin of the magnetic susceptibility sign. In Proceedings of the Ocean Drilling Program. Scientific Results 154 (eds. Shackleton, N., Curry, W., Richter, C. & Bralower, T.) 169–179 (1997).

  • Milliman, J. D., Summerhayes, C. P. & Barretto, H. T. Quaternary sedimentation on the amazon continental margin: A mannequin. Geol. Soc. Am. Bull. 86, 610 (1975).

    Article 
    ADS 

    Google Scholar
     

  • Damuth, J. E. Late Quaternary sedimentation within the western equatorial Atlantic. Geol. Soc. Am. Bull. 88, 695 (1977).

    Article 
    ADS 

    Google Scholar
     

  • Maslin, M. & Mikkelsen, N. Amazon Fan mass-transport deposits and underlying interglacial deposits: Age estimates and fan dynamics. In Proceedings of the Ocean Drilling Program, 155 Scientific Results (Ocean Drilling Program, 1997). https://doi.org/10.2973/odp.proc.sr.155.220.1997.

  • Frey, D. I., Morozov, E. G., Fomin, V. V., Diansky, N. A. & Tarakanov, R. Y. Regional modeling of antarctic backside water flows in the important thing passages of the Atlantic. J. Geophys. Res. Ocean. 124, 8414–8428 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Faugères, J.-C., Stow, D. A. V., Imbert, P. & Viana, A. Seismic options diagnostic of contourite drifts. Mar. Geol. 162, 1–38 (1999).

    Article 
    ADS 

    Google Scholar
     

  • Rebesco, M. & Stow, D. Seismic expression of contourites and associated deposits: A preface. Mar. Geophys. Res. 22, 303–308 (2001).

    Article 

    Google Scholar
     

  • Stow, D. A. V., Faugères, J.-C., Howe, J. A., Pudsey, C. J. & Viana, A. R. Bottom currents, contourites and deep-sea sediment drifts: present state-of-the-art. Geol. Soc. Lond. Mem. 22, 7–20 (2002).

    Article 

    Google Scholar
     

  • Nielsen, T., Knutz, P. C. & Kuijpers, A. Chapter 16 seismic expression of contourite depositional techniques. In Contourites, vol. 60 (eds. Rebesco, M. & Camerlenghi, A. B. T.-D. S.) 301–321 (Elsevier, 2008).

  • Smillie, Z., Stow, D. & Esentia, I. Deep-sea contourites drifts, erosional options and bedforms. In Encyclopedia of Ocean Sciences 97–110 (Elsevier, 2019). https://doi.org/10.1016/B978-0-12-409548-9.11590-8.

  • Frey, D., Borisov, D., Fomin, V., Morozov, E. & Levchenko, O. Modeling of backside currents for estimating their erosional-depositional potential within the Southwest Atlantic. J. Mar. Syst. 230, 103736 (2022).

    Article 

    Google Scholar
     

  • Stow, D. A. V. et al. Bedform-velocity matrix: The estimation of backside present velocity from bedform observations. Geology 37, 327–330 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Dianskii, N. A., Bagno, A. V. & Zalesny, V. B. Sigma-model for world ocean circulation and its sensitivity to variations in wind friction stresses. Izv. Akad. Nauk Fiz. Atmos. I OKEANA 38, 537–556 (2002).


    Google Scholar
     

  • Frey, D. I., Fomin, V. V., Diansky, N. A., Morozov, E. G. & Neiman, V. G. New mannequin and area knowledge on estimates of Antarctic Bottom Water movement via the deep Vema Channel. Dokl. Earth Sci. 474, 561–564 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Frey, D. I., Fomin, V. V, Tarakanov, R. Y., Diansky, N. A. & Makarenko, N. I. Bottom water flows within the Vema channel and over the Santos plateau primarily based on the sector and numerical experiments. In The Ocean in Motion: Circulation, Waves, Polar Oceanography (eds. Velarde, M. G., Tarakanov, R. Y. & Marchenko, A. V) 475–485 (Springer International Publishing, 2018). https://doi.org/10.1007/978-3-319-71934-4_29.

  • Morozov, E. G. et al. Antarctic backside water within the vema fracture zone summary plain language abstract key factors. J. Geophys. Res.: Oceans 128(8). (2023).

  • Visbeck, M. Deep velocity profiling utilizing lowered acoustic Doppler present profilers: Bottom monitor and inverse options*. J. Atmos. Ocean. Technol. 19, 794–807 (2002).

    Article 
    ADS 

    Google Scholar
     

  • Egbert, G. D. & Erofeeva, S. Y. Efficient inverse modeling of Barotropic ocean tides. J. Atmos. Ocean. Technol. 19, 183–204 (2002).

    Article 
    ADS 

    Google Scholar
     

  • Ivanova, E. V. et al. Investigations of lateral sedimentation and water mass properties within the tropical atlantic throughout cruise 60 of the R/V Akademik Ioffe. Oceanology 62, 581–583 (2022).

    Article 
    ADS 

    Google Scholar
     

  • - Advertisement -
    Pet News 2Day
    Pet News 2Dayhttps://petnews2day.com
    About the editor Hey there! I'm proud to be the editor of Pet News 2Day. With a lifetime of experience and a genuine love for animals, I bring a wealth of knowledge and passion to my role. Experience and Expertise Animals have always been a central part of my life. I'm not only the owner of a top-notch dog grooming business in, but I also have a diverse and happy family of my own. We have five adorable dogs, six charming cats, a wise old tortoise, four adorable guinea pigs, two bouncy rabbits, and even a lively flock of chickens. Needless to say, my home is a haven for animal love! Credibility What sets me apart as a credible editor is my hands-on experience and dedication. Through running my grooming business, I've developed a deep understanding of various dog breeds and their needs. I take pride in delivering exceptional grooming services and ensuring each furry client feels comfortable and cared for. Commitment to Animal Welfare But my passion extends beyond my business. Fostering dogs until they find their forever homes is something I'm truly committed to. It's an incredibly rewarding experience, knowing that I'm making a difference in their lives. Additionally, I've volunteered at animal rescue centers across the globe, helping animals in need and gaining a global perspective on animal welfare. Trusted Source I believe that my diverse experiences, from running a successful grooming business to fostering and volunteering, make me a credible editor in the field of pet journalism. I strive to provide accurate and informative content, sharing insights into pet ownership, behavior, and care. My genuine love for animals drives me to be a trusted source for pet-related information, and I'm honored to share my knowledge and passion with readers like you.
    -Advertisement-

    Latest Articles

    -Advertisement-

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here
    Captcha verification failed!
    CAPTCHA user score failed. Please contact us!