Friday, May 3, 2024
Friday, May 3, 2024
HomePet Industry NewsPet Travel NewsStructural insights into the system of the sodium/iodide symporter

Structural insights into the system of the sodium/iodide symporter

Date:

Related stories

-Advertisement-spot_img
-- Advertisment --
- Advertisement -

<

div id=””>

  • Portulano, C., Paroder-Belenitsky, M. & & Carrasco, N. The Na+/ I symporter (NIS): system and medical effect. Endocr.
    Rev. (

    *) 35 , 106– 149 (2014). Short Article. CAS. Google Scholar.

    Ravera, S., Reyna-Neyra, A., Ferrandino, G., Amzel, L. M. & Carrasco, N. The sodium/iodide symporter (NIS): molecular physiology and preclinical and scientific applications.

  • Annu.
    Rev. Physiol.
    79(* ), 261– 289 (2017 ). & Short Article. CAS. Google Scholar. Dai, G., Levy, O. & Carrasco, N. Cloning and characterization of the thyroid iodide transporter.

    Nature

  • 379, 458– 460(
    1996).

    Short Article.
    CAS. Google Scholar. (* )Mullur, R., Liu, Y. Y. & Brent, G. A. Thyroid hormonal agent guideline of metabolic process.
    Physiol. Rev.

    94

  • , 355– 382( 2014).

    Short Article.
    CAS. Google Scholar.
    Zhang, Z., Liu, F. & Chen, J. Molecular structure of the ATP-bound, phosphorylated human CFTR. Proc. Natl Acad. Sci. U.S.A.

    115

  • , 12757– 12762( 2018).
    Post.
    CAS. Google Scholar.(* )Reyna-Neyra, A. et al. The iodide transportation defect-causing Y348D anomaly in the Na (+)/ I(-) symporter renders the protein inherently non-active and hinders its targeting to the plasma membrane.
    Thyroid 31

    , 1272– 1281 (2021 ).

  • Short Article.
    CAS.

    Google Scholar.
    Tazebay, U. H. et al. The mammary gland iodide transporter is revealed throughout lactation and in breast cancer. Nat. Medication. 6

    , 871– 878 (2000 ).

  • Short Article.
    CAS.

    Google Scholar.
    Spitzweg, C. et al. The salt iodide symporter (NIS): unique applications for radionuclide imaging and treatment. Endocr. Relat. Cancer 28

    , T193– T213 (2021 ).

  • Short Article.
    CAS.

    Google Scholar.
    Kitzberger, C. et al. The salt iodide symporter (NIS) as theranostic gene: its emerging function in brand-new imaging methods and non-viral gene treatment. EJNMMI Res. 12

    , 25 (2022 ).

  • Short Article.
    CAS.

    Google Scholar.
    Urnauer, S. et al. EGFR-targeted nonviral NIS gene transfer for bioimaging and treatment of shared colon cancer metastases. Oncotarget 8

    , 92195– 92208 (2017 ).

  • Short Article.

    Google Scholar.
    Miller, A. & & Russell, S. J. Using the NIS press reporter gene for enhancing oncolytic virotherapy. Specialist Opin. Biol. Ther. 16

    , 15– 32 (2016 ).

  • Short Article.
    CAS.

    Google Scholar.
    Li, W., Nicola, J. P., Amzel, L. M. & & Carrasco, N. Asn441 plays an essential function in folding and function of the Na +/ I

  • symporter (NIS). FASEB J. 27, 3229– 3238 (2013 ). Short Article.
    CAS.

    Google Scholar.
    Nicola, J. P. et al. Sodium/iodide symporter mutant V270E triggers stunted development however no cognitive shortage. J. Clin. Endocrinol. Metab. 100

    , E1353– E1361 (2015 ).

  • Short Article.
    CAS.

    Google Scholar.
    Paroder-Belenitsky, M. et al. System of anion selectivity and stoichiometry of the Na+/ I- symporter (NIS). Proc. Natl Acad. Sci. U.S.A. 108

    , 17933– 17938 (2011 ).

  • Short Article.
    CAS.

    Google Scholar.
    Levy, O. et al. N-linked glycosylation of the thyroid Na +/ I

  • symporter (NIS). Ramifications for its secondary structure design. J. Biol. Chem. 273, 22657– 22663 (1998 ). Short Article.
    CAS.

    Google Scholar.
    Levy, O. et al. Characterization of the thyroid Na +/ I

  • symporter with an anti-COOH terminus antibody. Proc. Natl Acad. Sci. U.S.A. 94, 5568– 5573 (1997 ). Short Article.
    CAS.

    Google Scholar.
    Paroder, V., Nicola, J. P., Ginter, C. S. & & Carrasco, N. The iodide transportation defect-causing anomaly R124H: a δ-amino group at position 124 is vital for maturation and trafficking of the Na+/ I- symporter (NIS). J. Cell Sci. 126

    , 3305– 3313 (2013 ).

  • CAS.

    Google Scholar.
    De la Vieja, A., Reed, M. D., Ginter, C. S. & & Carrasco, N. Amino acid residues in transmembrane section IX of the Na +/ I

  • symporter contribute in its Na+ reliance and are vital for transportation activity. J. Biol. Chem. 282, 25290– 25298 (2007 ). Short Article.

    Google Scholar.
    Chew, T. A. et al. Structure and system of the cation-chloride cotransporter NKCC1. Nature 572

    , 488– 492 (2019 ).

  • Short Article.
    CAS.

    Google Scholar.
    Coleman, J. A., Green, E. M. & & Gouaux, E. X-ray structures and system of the human serotonin transporter. Nature 532

    , 334– 339 (2016 ).

  • Short Article.
    CAS.

    Google Scholar.
    Han, L. et al. Structure and system of the SGLT household of glucose transporters. Nature 601

    , 274– 279( 2022 ).

  • Short Article.
    CAS.

    Google Scholar.
    Niu, Y. et al. Structural basis of inhibition of the human SGLT2-MAP17 glucose transporter. Nature 601

    , 280– 284 (2021 ).

  • Short Article.

    Google Scholar.
    Yamashita, A., Singh, S. K., Kawate, T., Jin, Y. & & Gouaux, E. Crystal structure of a bacterial homologue of Na+/ Cl-dependent neurotransmitter transporters. Nature 437

    , 215– 223 (2005 ).

  • Short Article.
    CAS.

    Google Scholar.
    Faham, S. et al. The crystal structure of a salt galactose transporter exposes mechanistic insights into Na+/ sugar symport. Science 321

    , 810– 814 (2008 ).

  • Short Article.
    CAS.

    Google Scholar.
    Wang, J., Liu, Z., Frank, J. & & Moore, P. B. Recognition of ions in speculative electrostatic prospective maps. IUCrJ 5

    , 375– 381 (2018 ).

  • Short Article.
    CAS.

    Google Scholar.
    Zhekova, H. R. et al. Mapping of ion and substrate binding websites in human salt iodide symporter (hNIS). J. Chem. Inf. Design. 60

    , 1652– 1665 (2020 ).

  • Short Article.
    CAS.

    Google Scholar.
    Nicola, J. P., Carrasco, N. & & Amzel, L. M. Physiological salt concentrations improve the iodide affinity of the Na +/ I

  • symporter. Nat. Commun. 5, 3948 (2014 ). Short Article.
    CAS.

    Google Scholar.
    Ravera, S., Quick, M., Nicola, J. P., Carrasco, N. & & Amzel, L. M. Beyond non-integer Hill coefficients: an unique method to examining binding information, used to Na+- driven transporters. J. Gen. Physiol. 145

    , 555– 563 (2015 ).

  • Short Article.

    Google Scholar.
    Dohan, O. et al. The Na +/ I symporter (NIS) moderates electroneutral active transportation of the toxic waste perchlorate.

    Proc. Natl Acad. Sci. U.S.A.

  • 104, 20250– 20255 (2007 ). Short Article.
    CAS.

    Google Scholar.
    Tran, N. et al. Thyroid-stimulating hormonal agent increases active transportation of perchlorate into thyroid cells. Am. J. Physiol. Endocrinol. Metab. 294

    , E802– E806 (2008 ).

  • Short Article.
    CAS.

    Google Scholar.
    Zuckier, L. S. et al. Kinetics of perrhenate uptake and relative biodistribution of perrhenate, pertechnetate, and iodide by NaI symporter-expressing tissues in vivo. J. Nucl. Medication. 45

    , 500– 507 (2004 ).

  • CAS.

    Google Scholar.
    Eskandari, S. et al. Thyroid Na+/ I- symporter. System, stoichiometry, and uniqueness. J. Biol. Chem. 272

    , 27230– 27238 (1997 ).

  • Short Article.
    CAS.

    Google Scholar.
    Llorente-Esteban, A. et al. Allosteric guideline of mammalian Na +/ I

  • symporter activity by perchlorate. Nat. Struct. Mol. Biol. 27, 533– 539 (2020 ). Short Article.
    CAS.

    Google Scholar.
    Boutagy, N. E. et al. Noninvasive in vivo metrology of adeno-associated infection serotype 9-mediated expression of the sodium/iodide symporter under hindlimb anemia and neuraminidase desialylation in skeletal muscle utilizing single-photon emission calculated tomography/computed tomography. Circ. Cardiovasc. Imaging 12

    , e009063 (2019 ).

  • Short Article.

    Google Scholar.
    Pavelka, A. et al. CAVER: algorithms for examining characteristics of tunnels in macromolecules. IEEE/ACM Trans. Comput. Biol. Bioinform. 13

    , 505– 517 (2016 ).

  • Short Article.

    Google Scholar.
    Ferrandino, G. et al. Na + coordination at the Na2 website of the Na

    +

  • / I symporter. Proc. Natl Acad. Sci. U.S.A. 113(*
    ), E5379
    — E5388( 2016). (* )Short Article. CAS. Google Scholar. Sun, L. et al. Molecular characteristics simulations of the surface area stress and structure of salt options and clusters. J. Phys. Chem. 116 , 3198– 3204( 2012)
    .

    Short Article.
    CAS. Google Scholar.

    Carugo, O. Buried chloride stereochemistry in the Protein Data Bank.

  • BMC Struct. Biol. 14 , 19 (2014 ). Short Article.

    Google Scholar.

    Kang, B., Tang, H., Zhao, Z. & & Tune, S. Hofmeister series: insights of ion uniqueness from amphiphilic assembly and user interface home.

  • ACS Omega 5 , 6229– 6239 (2020 ). Short Article.
    CAS.

    Google Scholar.

    Marcus, Y. An easy empirical design explaining the thermodynamics of hydration of ions of commonly differing charges, sizes, and shapes.

  • Biophys. Chem. 51 , 111– 127 (1994 ). Short Article.
    CAS.

    Google Scholar.

    Yang, D. & & Gouaux, E. Lighting of serotonin transporter system and function of the allosteric website.

  • Sci. Adv. 7 , eabl3857 (2021 ). Short Article.
    CAS.

    Google Scholar.

    Coleman, J. A. & & Gouaux, E. Structural basis for acknowledgment of varied antidepressants by the human serotonin transporter.

  • Nat. Struct. Mol. Biol. 25 , 170– 175 (2018 ). Short Article.
    CAS.

    Google Scholar.

    Levy, O., Ginter, C. S., De la Vieja, A., Levy, D. & & Carrasco, N. Recognition of a structural requirement for thyroid Na+/ I- symporter (NIS) function from analysis of an anomaly that triggers human hereditary hypothyroidism.

  • FEBS Lett. 429 , 36– 40 (1998 ). Short Article.
    CAS.

    Google Scholar.

    Ferrandino, G. et al. Na +coordination at the Na2 website of the Na+/ I- symporter.

  • Proc. Natl Acad. Sci. U.S.A. 113 , E5379– E5388 (2016 ). Short Article.
    CAS.

    Google Scholar.

    Ravera, S., Quick, M., Nicola, J. P., Carrasco, N. & & Amzel, L. M. Beyond non-integer Hill coefficients: an unique method to examining binding information, used to Na+- driven transporters.

  • J. Gen. Physiol. 145 , 555– 563 (2015 ). Short Article.

    Google Scholar.

    Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced movement for enhanced cryo-electron microscopy.

  • Nat. Approaches 14 , 331– 332 (2017 ). Short Article.
    CAS.

    Google Scholar.

    Rohou, A. & & Grigorieff, N. CTFFIND4: quick and precise defocus estimate from electron micrographs.

  • J. Struct. Biol. 192 , 216– 221 (2015 ). Short Article.

    Google Scholar.

    Scheres, S. H. RELION: execution of a Bayesian method to cryo-EM structure decision.

  • J. Struct. Biol. 180 , 519– 530 (2012 ). Short Article.
    CAS.

    Google Scholar.

    Punjani, A., Rubinstein, J. L., Fleet, D. J. & & Brubaker, M. A. cryoSPARC: algorithms for fast without supervision cryo-EM structure decision.

  • Nat. Approaches 14 , 290– 296 (2017 ). Short Article.
    CAS.

    Google Scholar.

    Punjani, A., Zhang, H. & & Fleet, D. J. Non-uniform improvement: adaptive regularization enhances single-particle cryo-EM restoration.

  • Nat. Approaches 17 , 1214– 1221 (2020 ). Short Article.
    CAS.

    Google Scholar.

    Moriya, T. et al. Size matters: optimum mask size and box size for single-particle cryogenic electron microscopy. Preprint at

  • bioRxiv https://doi.org/10.1101/2020.08.23.263707 (2020 ). Emsley, P. & & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D

  • 60, 2126– 2132 (2004 ). Short Article.

    Google Scholar.

  • Adams, P. D. et al. PHENIX: a detailed Python-based system for macromolecular structure option. Acta Crystallogr. D 66, 213– 221 (2010 ). Short Article.
    CAS.

    Google Scholar.

    Pettersen, E. F. et al. UCSF Chimera-a visualization system for exploratory research study and analysis.

  • J. Comput. Chem. 25 , 1605– 1612 (2004 ). Short Article.
    CAS.

    Google Scholar.

    Górski, K. M. et al. HEALPix: a structure for high-resolution discretization and quick analysis of information dispersed on the sphere.

  • Astrophys. J. 622 , 759– 771 (2005 ). Wang, J., Liu, Z., Frank, J. & & Moore, P. B. Recognition of ions in speculative electrostatic prospective maps.

    IUCrJ

  • 5, 375– 381 (2018 ). Short Article.
    CAS.

    Google Scholar.
    Lee, J. et al. CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations utilizing the CHARMM36 additive force field.

  • J. Chem. Theory Comput. 12 , 405– 413 (2016 ). Short Article.
    CAS.

    Google Scholar.

    Abraham, M. J. et al. GROMACS: high efficiency molecular simulations through multi-level parallelism from laptop computers to supercomputers.

  • SoftwareX 1 , 19– 25 (2015 ). Short Article.

    Google Scholar.

    Huang, J. et al. CHARMM36m: an enhanced force field for folded and inherently disordered proteins.

  • Nat. Approaches 14 , 71– 73 (2017 ). Short Article.
    CAS.

    Google Scholar.

    Essmann, U. et al. A smooth particle mesh Ewald approach.

  • J. Chem. Phys. 103 , 8577– 8593 (1995 ). Short Article.
    CAS.

    Google Scholar.

    Bussi, G., Donadio, D. & & Parrinello, M. Canonical tasting through speed rescaling.

  • J. Chem. Phys. 126 , 014101 (2007 ). Short Article.

    Google Scholar.

    Parrinello, M. & & Rahman, A. Polymorphic shifts in single crystals: a brand-new molecular characteristics approach.

  • J. Appl. Phys. 52 , 7182– 7190 (1981 ). Short Article.
    CAS.

    Google Scholar.

    Hess, B., Bekker, H., Berendsen, H. J. & & Fraaije, J. G. LINCS: a direct restraint solver for molecular simulations.

  • J. Comput. Chem. 18 , 1463– 1472 (1997 ). Short Article.
    CAS.

    Google Scholar.

    Li, P., Tune, L. F. & & Merz, K. M. Jr. Methodical parameterization of monovalent ions using the nonbonded design.

  • J. Chem. Theory Comput. 11 , 1645– 1657 (2015 ). Short Article.
    CAS.

    Google Scholar.

    <

    p class=”c-article-references__links u-hide-print”>

    - Advertisement -
  • Pet News 2Day
    Pet News 2Dayhttps://petnews2day.com
    About the editor Hey there! I'm proud to be the editor of Pet News 2Day. With a lifetime of experience and a genuine love for animals, I bring a wealth of knowledge and passion to my role. Experience and Expertise Animals have always been a central part of my life. I'm not only the owner of a top-notch dog grooming business in, but I also have a diverse and happy family of my own. We have five adorable dogs, six charming cats, a wise old tortoise, four adorable guinea pigs, two bouncy rabbits, and even a lively flock of chickens. Needless to say, my home is a haven for animal love! Credibility What sets me apart as a credible editor is my hands-on experience and dedication. Through running my grooming business, I've developed a deep understanding of various dog breeds and their needs. I take pride in delivering exceptional grooming services and ensuring each furry client feels comfortable and cared for. Commitment to Animal Welfare But my passion extends beyond my business. Fostering dogs until they find their forever homes is something I'm truly committed to. It's an incredibly rewarding experience, knowing that I'm making a difference in their lives. Additionally, I've volunteered at animal rescue centers across the globe, helping animals in need and gaining a global perspective on animal welfare. Trusted Source I believe that my diverse experiences, from running a successful grooming business to fostering and volunteering, make me a credible editor in the field of pet journalism. I strive to provide accurate and informative content, sharing insights into pet ownership, behavior, and care. My genuine love for animals drives me to be a trusted source for pet-related information, and I'm honored to share my knowledge and passion with readers like you.
    -Advertisement-

    Latest Articles

    -Advertisement-

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here
    Captcha verification failed!
    CAPTCHA user score failed. Please contact us!