Saturday, May 18, 2024
Saturday, May 18, 2024
HomePet Industry NewsPet Travel NewsAn important evaluation of the function of creatine in brown fat thermogenesis

An important evaluation of the function of creatine in brown fat thermogenesis

Date:

Related stories

-Advertisement-spot_img
-- Advertisment --
- Advertisement -
  • Nicholls, D. G. Mitochondrial proton leakages and uncoupling proteins. Biochim. Biophys. Acta Bioenerg. 1862, 148428 (2021 ). An evaluation of UCP1, from the undamaged adipocyte to the separated protein

    Article
    CAS.

    Google Scholar

  • Nedergaard, J. & & Cannon, B. Diet-induced thermogenesis: concepts and risks. Approaches Mol. Biol. 2448, 177– 202 (2022 ).

    Article

    Google Scholar

  • Kazak, L. et al. A creatine-driven substrate cycle improves energy expense and thermogenesis in beige fat. Cell 163, 643– 655 (2015 ). The preliminary proposition for an useless creatine cycle in beige fat

    Article
    CAS.

    Google Scholar

  • Roesler, A. & & Kazak, L. UCP1-independent thermogenesis. Biochem. J. 477, 709– 725 (2020 ).

    Article
    CAS.

    Google Scholar

  • Himms-Hagen, J. Guideline of metabolic procedures in brown fat in relation to nonshivering thermogenesis. Adv. Enzym. Regul. 8, 131– 151 (1970 ).

    Article
    CAS.

    Google Scholar

  • Foster, D. O. & & Frydman, M. L. Nonshivering thermogenesis in the rat. II. Measurements of blood circulation with microspheres indicate brown fat as the dominant website of the calorigenesis caused by noradrenaline. Can. J. Physiol. Pharmacol. 56, 110– 122 (1978 ).

    Article
    CAS.

    Google Scholar

  • Lindberg, O., de, P. J., Rylander, E. & & Afzelius, B. A. Research of the mitochondrial energy-transfer system of brown fat. J. Cell Biol. 34, 293– 310 (1967 ).

    Article
    CAS.

    Google Scholar

  • Rafael, J., Ludolph, H.-J. & & Hohorst, H.-J. Mitochondria from brown fat: uncoupling of oxidative phosphorylation by long chain fats and recoupling by guanine triphosphate. Hoppe Seylers Z. Physiol. Chem. 350, 1121– 1131 (1969 ).

    Article
    CAS.

    Google Scholar

  • Nicholls, D. G., Grav, H. J. & & Lindberg, O. Mitochondria from brown fat: guideline of respiration in vitro by variations in volume of the matrix compartment. Eur. J. Biochem. 31, 526– 533 (1972 ).

    Article
    CAS.

    Google Scholar

  • Nicholls, D. G. & & Lindberg, O. Brown fat mitochondria: the impact of albumin and nucleotides on passive ion permeabilities. Eur. J. Biochem. 37, 523– 530 (1973 ).

    Article
    CAS.

    Google Scholar

  • Mitchell, P. & & Moyle, J. Chemiosmotic hypothesis of oxidative phosphorylation. Nature 213, 137– 139 (1967 ).

    Article
    CAS.

    Google Scholar

  • Nicholls, D. G. The impact of respiration and ATP hydrolysis on the proton electrochemical possible gradient throughout the inner membrane of rat liver mitochondria as figured out by ion circulation. Eur. J. Biochem. 50, 305– 315 (1974 ).

    Article
    CAS.

    Google Scholar

  • Nicholls, D. G. Hamster brown fat mitochondria: the control of respiration and the proton electrochemical capacity by possible physiological effectors of the proton conductance of the inner membrane. Eur. J. Biochem. 49, 573– 583 (1974 ).

    Article
    CAS.

    Google Scholar

  • Cunningham, S. A., Wiesinger, H. & & Nicholls, D. G. Metrology of fat activation of the uncoupling protein in brown adipocytes and mitochondria from the guinea-pig. Eur. J. Biochem. 157, 415– 420 (1986 ).

    Article
    CAS.

    Google Scholar

  • Nicholls, D. G. Hamster brown fat mitochondria: purine nucleotide control of the ionic conductance of the inner membrane, the nature of the nucleotide-binding website. Eur. J. Biochem. 62, 223– 228 (1976 ).

    Article
    CAS.

    Google Scholar

  • Heaton, G. M., Wagenvoord, R. J., Kemp, A. & & Nicholls, D. G. Brown fat mitochondria: photoaffinity labelling of the regulative website for energy dissipation. Eur. J. Biochem. 82, 515– 521 (1978 ).

    Article
    CAS.

    Google Scholar

  • Crichton, P. G., Lee, Y. & & Kunji, E. R. The molecular functions of uncoupling protein 1 assistance a standard mitochondrial carrier-like system. Biochimie 134, 35– 50 (2017 ).

    Article
    CAS.

    Google Scholar

  • Rafael, J. & & Heldt, H. W. Binding of guanine nucleotides to the external surface area of the inner membrane of guinea-pig brown fat mitochondria in connection with the thermogenic capability of the tissue. FEBS Lett. 63, 304– 308 (1976 ).

    Article
    CAS.

    Google Scholar

  • Cannon, B. & & Nedergaard, J. Brown fat: function and physiological significance. Physiol. Rev. 84, 277– 359 (2004 ).

    Article
    CAS.

    Google Scholar

  • Rafael, J., Fesser, W. & & Nicholls, D. G. Cold-adaptation in the guinea-pig at the level of the separated brown adipocyte. Am. J. Physiol. 250, C228– C235 (1986 ).

    Article
    CAS.

    Google Scholar

  • Rial, E. & & Nicholls, D. G. The mitochondrial uncoupling protein from guinea-pig brown fat: concurrent boost in structural and practical criteria throughout cold-adaptation. Biochem. J. 222, 685– 693 (1984 ).

    Article
    CAS.

    Google Scholar

  • Locke, R. M., Rial, E. & & Nicholls, D. G. The severe guideline of mitochondrial proton conductance in cells and mitochondria from the brown fat of cold-adapted and warm-adapted guinea pigs. Eur. J. Biochem. 129, 381– 387 (1982 ).

    Article
    CAS.

    Google Scholar

  • Jansky, L. et al. Interspecies distinctions in cold adjustment and nonshivering thermogenesis. Fed. Proc. 28, 1053– 1058 (1969 ).

    CAS.

    Google Scholar

  • Cannon, B. Control of fatty-acid oxidation in brown-adipose-tissue mitochondria. Eur. J. Biochem. 23, 125– 135 (1971 ).

    Article
    CAS.

    Google Scholar

  • Nicholls, D. G. & & Locke, R. M. Thermogenic systems in brown fat. Physiol. Rev. 64, 1– 64 (1984 ).

    Article
    CAS.

    Google Scholar

  • Virtanen, K. A. et al. Practical brown fat in healthy grownups. N. Engl. J. Medication. 360, 1518– 1525 (2009 ).

    Article
    CAS.

    Google Scholar

  • Fischer, A. W. et al. Undamaged innervation is important for diet-induced recruitment of brown fat. Am. J. Physiol. 316, E487– E503 (2019 ).

    CAS.

    Google Scholar

  • Wang, H. et al. Uncoupling protein-1 expression does not safeguard mice from diet-induced weight problems. Am. J. Physiol. 320, E333– E345 (2021 ).

    CAS.

    Google Scholar

  • Rothwell, N. J. & & Stock, M. J. A function for brown fat in diet-induced thermogenesis. Nature 281, 31– 35 (1979 ).

    Article
    CAS.

    Google Scholar

  • Kozak, L. P. Brown fat and the misconception of diet-induced thermogenesis. Cell Metab. 11, 263– 267 (2010 ).

    Article
    CAS.

    Google Scholar

  • Hussain, M. F., Roesler, A. & & Kazak, L. Guideline of adipocyte thermogenesis: systems managing weight problems. FEBS J. 287, 3370– 3385 (2020 ).

    Article
    CAS.

    Google Scholar

  • Enerback, S. et al. Mice doing not have mitochondrial uncoupling protein are cold-sensitive however not overweight. Nature 387, 90– 94 (1997 ).

    Article
    CAS.

    Google Scholar

  • Kazak, L. et al. UCP1 shortage triggers brown fat breathing chain deficiency and sensitizes mitochondria to calcium overload-induced dysfunction. Proc. Natl Acad. Sci. U.S.A. 114, 7981– 7986 (2017 ).

    Article
    CAS.

    Google Scholar

  • Feldmann, H. M., Golozoubova, V., Cannon, B. & & Nedergaard, J. UCP1 ablation causes weight problems and eliminates diet-induced thermogenesis in mice exempt from thermal tension by living at thermoneutrality. Cell Metab. 9, 203– 209 (2009 ).

    Article
    CAS.

    Google Scholar

  • Matthias, A. et al. Thermogenic reactions in brown fat cells are totally UCP1-dependent. UCP2 or UCP3 do not replacement for UCP1 in adrenergically or fatty acid-induced thermogenesis. J. Biol. Chem. 275, 25073– 25081 (2000 ).

    Article
    CAS.

    Google Scholar

  • Nedergaard, J. et al. Life without UCPI: mitochondrial, cellular and organismal qualities of the UCPI-ablated mice. Biochem. Soc. Trans. 29, 756– 763 (2001 ).

    Article
    CAS.

    Google Scholar

  • Golozoubova, V., Cannon, B. & & Nedergaard, J. UCP1 is important for adaptive adrenergic nonshivering thermogenesis. Am. J. Physiol. 291, E350– E357 (2006 ).

    CAS.

    Google Scholar

  • Hofmann, W. E. et al. Results of hereditary background on thermoregulation and fatty acid-induced uncoupling of mitochondria in UCP1-deficient mice. J. Biol. Chem. 276, 12460– 12465 (2001 ).

    Article
    CAS.

    Google Scholar

  • Meyer, C. W. et al. Adaptive thermogenesis and thermal conductance in wild-type and UCP1-KO mice. Am. J. Physiol. 299, R1396– R1406 (2010 ).

    CAS.

    Google Scholar

  • Chouchani, E. T., Kazak, L. & & Spiegelman, B. M. New advances in adaptive thermogenesis: UCP1 and beyond. Cell Metab. 29, 27– 37 (2019 ).

    Article
    CAS.

    Google Scholar

  • Bertholet, A. M. et al. Mitochondrial spot clamp of beige adipocytes exposes UCP1-positive and UCP1-negative cells both displaying useless creatine biking. Cell Metab. 25, 811– 822 (2017 ).

    Article
    CAS.

    Google Scholar

  • Rahbani, J. F. et al. Creatine kinase B manages useless creatine biking in thermogenic fat. Nature 590, 480– 485 (2021 ). Creatine kinase B is proposed to be the mitochondria-associated isoform for FCC

    Article
    CAS.

    Google Scholar

  • Sun, Y. et al. Mitochondrial TNAP manages thermogenesis by hydrolysis of phosphocreatine. Nature 593, 580– 585 (2021 ). Tissue non-specific alkaline phosphatase is proposed to be the mitochondria-associated phosphocreatine phosphatase

    Article
    CAS.

    Google Scholar

  • Greenhill, C. Weight problems: function for creatine metabolic process in energy expense. Nat. Rev. Endocrinol. 13, 624 (2017 ).

    Article

    Google Scholar

  • Wallimann, T. et al. Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and changing energy needs: the ‘phosphocreatine circuit’ for cellular energy homeostasis. Biochem. J. 281, 21– 40 (1992 ).

    Article
    CAS.

    Google Scholar

  • Wallimann, T., Tokarska-Schlattner, M. & & Schlattner, U. The creatine kinase system and pleiotropic impacts of creatine. Amino Acids 40, 1271– 1296 (2011 ).

    Article
    CAS.

    Google Scholar

  • Pollard, A. E. et al. AMPK activation secures versus diet plan caused weight problems through Ucp1-independent thermogenesis in subcutaneous white fat. Nat. Metab. 1, 340– 349 (2019 ).

    Article
    CAS.

    Google Scholar

  • Kuiper, J. W., Oerlemans, F. T., Fransen, J. A. & & Wieringa, B. Creatine kinase B lacking nerve cells display an increased portion of motile mitochondria. BMC Neurosci. 9, 73 (2008 ).

    Article

    Google Scholar

  • Streijger, F. et al. Mice doing not have brain-type creatine kinase activity program faulty thermoregulation. Physiol. Behav. 97, 76– 86 (2009 ).

    Article
    CAS.

    Google Scholar

  • Kazak, L. et al. Hereditary deficiency of adipocyte creatine metabolic process prevents diet-induced thermogenesis and drives weight problems. Cell Metab. 26, 693 (2017 ).

    Article

    Google Scholar

  • Berlet, H. H., Bonsmann, I. & & Birringer, H. Event of totally free creatine, phosphocreatine and creatine phosphokinase in fat. Biochim. Biophys. Acta 437, 166– 174 (1976 ).

    Article
    CAS.

    Google Scholar

  • Cannon, B. & & Vogel, G. The mitochondrial ATPase of brown fat. Filtration and contrast with the mitochondrial ATPase from beef heart. FEBS Lett. 76, 284– 289 (1977 ).

    Article
    CAS.

    Google Scholar

  • Maqdasy, S. et al. Impaired phosphocreatine metabolic process in white adipocytes promotes swelling. Nat. Metab. 4, 190– 202 (2022 ).

    Article
    CAS.

    Google Scholar

  • Bournat, J. C. & & Brown, C. W. Mitochondrial dysfunction in weight problems. Curr. Opin. Endocrinol. Diabetes Obes. 17, 446– 452 (2010 ).

    Article
    CAS.

    Google Scholar

  • Connell, N. J. et al. No proof for brown fat activation after creatine supplements in adult vegetarians. Nat. Metab. 3, 107– 117 (2021 ).

    Article
    CAS.

    Google Scholar

  • Tune, A. et al. Low- and high-thermogenic brown adipocyte subpopulations exist side-by-side in murine fat. J. Clin. Invest. 130, 247– 257 (2020 ).

    Article
    CAS.

    Google Scholar

  • Schottl, T. et al. Minimal mitochondrial capability of visceral versus subcutaneous white adipocytes in male C57BL/6N mice. Endocrinology 156, 923– 933 (2015 ).

    Article

    Google Scholar

  • Shabalina, I. G. et al. UCP1 in brite/beige fat mitochondria is functionally thermogenic. Cell Rep. 5, 1196– 1203 (2013 ).

    Article
    CAS.

    Google Scholar

  • Houstek, J. et al. The expression of subunit c associates with and hence might restrict the biosynthesis of the mitochondrial F0F1-ATPase in brown fat. J. Biol. Chem. 270, 7689– 7694 (1995 ).

    Article
    CAS.

    Google Scholar

  • Nicholls, D. G. & & Bernson, V. S. M. Inter-relationships in between proton electrochemical gradient, adenine nucleotide phosphorylation capacity and respiration throughout substrate-level and oxidative phosphorylation by mitochondria from brown fat of cold-adapted guinea-pigs. Eur. J. Biochem. 75, 601– 612 (1977 ).

    Article
    CAS.

    Google Scholar

  • Nicholls, D. G., Shepherd, D. & & Garland, P. B. A constant recording strategy for the measurement of co2, and its application to mitochondrial oxidation and decarboxylation responses. Biochem. J. 103, 677– 691 (1967 ).

    Article
    CAS.

    Google Scholar

  • Held, N. M. et al. Pyruvate dehydrogenase complex plays a main function in brown adipocyte energy expense and fuel usage throughout short-term beta-adrenergic activation. Sci. Rep. 8, 9562 (2018 ).

    Article

    Google Scholar

  • Briolay, A., Bessueille, L. & & Magne, D. TNAP: a brand-new multitask enzyme in basal metabolism. Int. J. Mol. Sci 22, 10470 (2021 ).

  • Rahbani, J. F., Chouchani, E. T., Spiegelman, B. M. & & Kazak, L. Measurement of useless creatine biking utilizing respirometry. Approaches Mol. Biol. 2448, 141– 153 (2022 ). Adetailed description of the mitochondrial FCC assay

    Article

    Google Scholar

  • Lawson, J. W. & & Veech, R. L. Results of pH and totally free Mg 2+ on the K eq of the creatine kinase response and other phosphate hydrolyses and phosphate transfer responses. J. Biol. Chem. 254, 6528– 6537 (1979 ).

    Article
    CAS.

    Google Scholar

  • Mookerjee, S. A., Gerencser, A. A., Nicholls, D. G. & & Brand Name, M. D. Quantifying rates, paths and versatility of intracellular ATP production and usage utilizing extracellular flux measurements. J. Biol. Chem. 292, 7189– 7207 (2017 ).

    Article
    CAS.

    Google Scholar

  • Matsushima, K. et al. Contrast of kinetic constants of creatine kinase isoforms. Int. J. Biol. Macromol. 38, 83– 88 (2006 ).

    Article
    CAS.

    Google Scholar

  • Basson, C. T., Grace, A. M. & & Roberts, R. Enzyme kinetics of an extremely cleansed mitochondrial creatine kinase in contrast with cytosolic kinds. Mol. Cell. Biochem. 67, 151– 159 (1985 ).

    Article
    CAS.

    Google Scholar

  • - Advertisement -
    Pet News 2Day
    Pet News 2Dayhttps://petnews2day.com
    About the editor Hey there! I'm proud to be the editor of Pet News 2Day. With a lifetime of experience and a genuine love for animals, I bring a wealth of knowledge and passion to my role. Experience and Expertise Animals have always been a central part of my life. I'm not only the owner of a top-notch dog grooming business in, but I also have a diverse and happy family of my own. We have five adorable dogs, six charming cats, a wise old tortoise, four adorable guinea pigs, two bouncy rabbits, and even a lively flock of chickens. Needless to say, my home is a haven for animal love! Credibility What sets me apart as a credible editor is my hands-on experience and dedication. Through running my grooming business, I've developed a deep understanding of various dog breeds and their needs. I take pride in delivering exceptional grooming services and ensuring each furry client feels comfortable and cared for. Commitment to Animal Welfare But my passion extends beyond my business. Fostering dogs until they find their forever homes is something I'm truly committed to. It's an incredibly rewarding experience, knowing that I'm making a difference in their lives. Additionally, I've volunteered at animal rescue centers across the globe, helping animals in need and gaining a global perspective on animal welfare. Trusted Source I believe that my diverse experiences, from running a successful grooming business to fostering and volunteering, make me a credible editor in the field of pet journalism. I strive to provide accurate and informative content, sharing insights into pet ownership, behavior, and care. My genuine love for animals drives me to be a trusted source for pet-related information, and I'm honored to share my knowledge and passion with readers like you.
    -Advertisement-

    Latest Articles

    -Advertisement-

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here
    Captcha verification failed!
    CAPTCHA user score failed. Please contact us!