Monday, April 29, 2024
Monday, April 29, 2024
HomePet Industry NewsPet Travel NewsBlood–brain barrier injury and neuroinflammation caused by SARS-CoV-2 in a lung–brain microphysiological...

Blood–brain barrier injury and neuroinflammation caused by SARS-CoV-2 in a lung–brain microphysiological system

Date:

Related stories

-Advertisement-spot_img

Moral Animal Transport Initiatives : Qatar Airways Cargo

Qatar Airways Cargo is revolutionizing dwell animal transport with...
-- Advertisment --
- Advertisement -
  • Burks, S. M., Rosas-Hernandez, H., Alejandro Ramirez-Lee, M., Cuevas, E. & Talpos, J. C. Can SARS-CoV-2 contaminate the main nerve system by means of the olfactory bulb or the blood–brain barrier? Brain Behav. Immun. 95, 7–14 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mao, L. et al. Neurologic symptoms of hospitalized clients with coronavirus illness 2019 in Wuhan, China. JAMA Neurol. 77, 683–690 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Varatharaj, A. et al. Neurological and neuropsychiatric problems of COVID-19 in 153 clients: a UK-wide monitoring research study. Lancet Psychiatry 7, 875–882 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moriguchi, T. et al. A very first case of meningitis/encephalitis related to SARS-coronavirus-2. Int. J. Infect. Dis. 94, 55–58 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bhalerao, A. et al. In vitro modeling of the neurovascular system: advances in the field. Fluids Barriers CNS 17, 22 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oddo, A. et al. Advances in microfluidic blood–brain barrier (BBB) designs. Trends Biotechnol. 37, 1295–1314 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Michael, B. D. et al. Astrocyte- and neuron-derived CXCL1 drives neutrophil transmigration and blood–brain barrier permeability in viral sleeping sickness. Cell Rep. 32, 108150 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • He, Q. et al. Herpes simplex infection 1-induced blood–brain barrier damage includes apoptosis related to GM130-mediated Golgi tension. Front Mol. Neurosci. 13, 2 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cle, M. et al. Zika virus infection promotes regional swelling, cell adhesion particle upregulation, and leukocyte recruitment at the blood–brain barrier. mBio 11, e01183-20 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thakur, K.T. et al. COVID-19 neuropathology at Columbia University Irving Medical Center/New York Presbyterian Hospital. Brain 144, 2696–2708 (2021).

  • Matschke, J. et al. Neuropathology of clients with COVID-19 in Germany: a post-mortem case series. Lancet Neurol. 19, 919–929 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reichard, R. R. et al. Neuropathology of COVID-19: a spectrum of vascular and severe distributed encephalomyelitis (ADEM)-like pathology. Acta Neuropathol. 140, 1–6 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Douaud, G. et al. SARS-CoV-2 is related to modifications in brain structure in UK Biobank. Nature 604, 697–707 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Krasemann, S. et al. The blood–brain barrier is dysregulated in COVID-19 and works as a CNS entry path for SARS-CoV-2. Stem Cell Rep. 17, 307–320 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Jiao, L. et al. The olfactory path is a possible method for SARS-CoV-2 to get into the main nerve system of rhesus monkeys. Signal Transduct. Target Ther. 6, 169 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Song, E. et al. Neuroinvasion of SARS-CoV-2 in human and mouse brain. J. Exp. Med. 218, e20202135 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, L. et al. SARS-CoV-2 crosses the blood–brain barrier accompanied with basement membrane disturbance without tight junctions change. Signal Transduct. Target Ther. 6, 337 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yinda, C. K. et al. K18-hACE2 mice establish breathing illness looking like serious COVID-19. PLoS Pathog. 17, e1009195 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang, R. D. et al. Pathogenesis of SARS-CoV-2 in transgenic mice revealing human angiotensin-converting enzyme 2. Cell 182, 50–58.e58 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, B. Z. et al. SARS-CoV-2 contaminates human neural progenitor cells and brain organoids. Cell Res. 30, 928–931 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ramani, A. et al. SARS-CoV-2 targets nerve cells of 3D human brain organoids. EMBO J. 39, e106230 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bullen, C. K. et al. Infectability of human BrainSphere nerve cells recommends neurotropism of SARS-CoV-2. ALTEX 37, 665–671 (2020).

    PubMed 

    Google Scholar
     

  • McMahon, C. L., Staples, H., Gazi, M., Carrion, R. & Hsieh, J. SARS-CoV-2 targets glial cells in human cortical organoids. Stem Cell Rep. 16, 1156–1164 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Pellegrini, L. et al. SARS-CoV-2 contaminates the brain choroid plexus and interrupts the blood–CSF barrier in human brain organoids. Cell Stem Cell 27, 951–961.e955 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jacob, F. et al. Human pluripotent stem cell-derived neural cells and brain organoids reveal SARS-CoV-2 neurotropism predominates in choroid plexus epithelium. Cell Stem Cell 27, 937–950.e939 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bhatia, S. N. & Ingber, D. E. Microfluidic organs-on-chips. Nat. Biotechnol. 32, 760–772 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Abaci, H. E. & Shuler, M. L. Human-on-a-chip style methods and concepts for physiologically based pharmacokinetics/pharmacodynamics modeling. Integr. Biol. 7, 383–391 (2015).

    Article 

    Google Scholar
     

  • Huh, D. et al. Reconstituting organ-level lung functions on a chip. Science 328, 1662–1668 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vatine, G. D. et al. Human iPSC-derived blood–brain barrier chips make it possible for illness modeling and customized medication applications. Cell Stem Cell 24, 995–1005.e1006 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ahn, S. I. et al. Microengineered human blood–brain barrier platform for comprehending nanoparticle transportation systems. Nat. Commun. 11, 175 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bhise, N. S. et al. A liver-on-a-chip platform with bioprinted hepatic spheroids. Biofabrication 8, 014101 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Knowlton, S. & Tasoglu, S. A bioprinted liver-on-a-chip for drug screening applications. Trends Biotechnol. 34, 681–682 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Agarwal, A., Goss, J. A., Cho, A., McCain, M. L. & Parker, K. K. Microfluidic heart on a chip for greater throughput medicinal research studies. Lab Chip 13, 3599–3608 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ugolini, G. S., Visone, R., Cruz-Moreira, D., Mainardi, A. & Rasponi, M. Generation of practical heart microtissues in a whipping heart-on-a-chip. Methods Cell. Biol. 146, 69–84 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brown, J. A. et al. Metabolic effects of inflammatory disturbance of the blood–brain barrier in an organ-on-chip design of the human neurovascular system. J. Neuroinflammation 13, 306 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brown, J. A. et al. Metabolic effects of interleukin-6 obstacle in establishing nerve cells and astroglia. J. Neuroinflammation 11, 183 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maoz, B. M. et al. A connected organ-on-chip design of the human neurovascular system exposes the metabolic coupling of endothelial and neuronal cells. Nat. Biotechnol. 36, 865–874 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ronaldson-Bouchard, K. et al. A multi-organ chip with grown tissue specific niches connected by vascular circulation. Nat. Biomed. Eng. 6, 351–371 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ortega-Prieto, A. M. et al. 3D microfluidic liver cultures as a physiological preclinical tool for liver disease B virus infection. Nat. Commun. 9, 682 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, J. et al. A virus-induced kidney illness design based upon organ-on-a-chip: pathogenesis expedition of virus-related kidney dysfunctions. Biomaterials 219, 119367 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Johnson, B. N. et al. 3D printed nerve system on a chip. Lab Chip 16, 1393–1400 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Junaid, A. et al. Ebola hemorrhagic shock syndrome-on-a-chip. iScience 23, 100765 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bai, H. et al. Mechanical control of natural immune actions versus viral infection revealed in a human lung alveolus chip. Nat. Commun. 13, 1928 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Si, L. et al. A human-airway-on-a-chip for the fast recognition of prospect antiviral rehabs and prophylactics. Nat. Biomed. Eng. 5, 815–829 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Deinhardt-Emmer, S. et al. SARS-CoV-2 triggers serious epithelial swelling and barrier dysfunction. J. Virol. 95, e00110-21 (2021).

  • Guo, Y. et al. SARS-CoV-2 caused digestive actions with a biomimetic human gut-on-chip. Sci. Bull. 66, 783–793 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Thacker, V. V. et al. Rapid endotheliitis and vascular damage define SARS-CoV-2 infection in a human lung-on-chip design. EMBO Rep. 22, e52744 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, M. et al. Biomimetic human illness design of SARS-CoV-2 caused lung injury and immune actions on organ chip system. Adv. Sci. 8, 2002928 (2020).

    Article 

    Google Scholar
     

  • Buzhdygan, T. P. et al. The SARS-CoV-2 spike protein changes barrier function in 2D fixed and 3D microfluidic in-vitro designs of the human blood–brain barrier. Neurobiol. Dis. 146, 105131 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sungnak, W. et al. SARS-CoV-2 entry elements are extremely revealed in nasal epithelial cells together with natural immune genes. Nat. Med. 26, 681–687 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zou, X. et al. Single-cell RNA-seq information analysis on the receptor ACE2 expression exposes the possible threat of various human organs susceptible to 2019-nCoV infection. Front. Med. 14, 185–192 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ballabh, P., Braun, A. & Nedergaard, M. The blood–brain barrier: a summary: structure, guideline, and medical ramifications. Neurobiol. Dis. 16, 1–13 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Obermeier, B., Daneman, R. & Ransohoff, R. M. Development, upkeep and disturbance of the blood–brain barrier. Nat. Med. 19, 1584–1596 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abbott, N. J., Ronnback, L. & Hansson, E. Astrocyte-endothelial interactions at the blood–brain barrier. Nat. Rev. Neurosci. 7, 41–53 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bwire, G. M., Majigo, M. V., Njiro, B. J. & Mawazo, A. Detection profile of SARS-CoV-2 utilizing RT-PCR in various kinds of medical specimens: a methodical evaluation and meta-analysis. J. Med. Virol. 93, 719–725 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, W. et al. Detection of SARS-CoV-2 in various kinds of medical specimens. JAMA 323, 1843–1844 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu, F. et al. Quantitative detection and viral load analysis of SARS-CoV-2 in contaminated clients. Clin. Infect. Dis. 71, 793–798 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Leng, L. et al. Pathological functions of COVID-19-associated lung injury: an initial proteomics report based upon medical samples. Signal Transduct. Target Ther. 5, 240 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Walter, L. et al. Nonpsychotropic cannabinoid receptors manage microglial cell migration. J. Neurosci. 23, 1398–1405 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, Y. J. et al. Late endosomes promote microglia migration by means of cytosolic translocation of immature protease cathD. Sci. Adv. 6, eaba5783 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lan, X., Han, X., Li, Q., Yang, Q. W. & Wang, J. Modulators of microglial activation and polarization after intracerebral haemorrhage. Nat. Rev. Neurol. 13, 420–433 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Orihuela, R., McPherson, C. A. & Harry, G. J. Microglial M1/M2 polarization and metabolic states. Br. J. Pharmacol. 173, 649–665 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, X. & Khalil, R. A. Matrix metalloproteinases, vascular renovation, and vascular illness. Adv. Pharm. 81, 241–330 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Raffetto, J. D. & Khalil, R. A. Matrix metalloproteinases and their inhibitors in vascular renovation and vascular illness. Biochem. Pharmacol. 75, 346–359 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bocci, M. et al. Infection of brain pericytes underlying neuropathology of COVID-19 clients. Int. J. Mol. Sci. 22, 11622 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cardot-Leccia, N., Hubiche, T., Dellamonica, J., Burel-Vandenbos, F. & Passeron, T. Pericyte change clarifies micro-vasculopathy in COVID-19 infection. Intensive Care Med. 46, 1777–1778 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun, J. et al. Transplantation of hPSC-derived pericyte-like cells promotes practical healing in ischemic stroke mice. Nat. Commun. 11, 5196 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Perrin, P. et al. Cytokine release syndrome-associated encephalopathy in clients with COVID-19. Eur. J. Neurol. 28, 248–258 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, A. C. et al. Dysregulation of brain and choroid plexus cell enters serious COVID-19. Nature 595, 565–571 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ghersi-Egea, J. F. et al. Molecular anatomy and functions of the choroidal blood–cerebrospinal fluid barrier in health and illness. Acta Neuropathol. 135, 337–361 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lun, M. P., Monuki, E. S. & Lehtinen, M. K. Development and functions of the choroid plexus-cerebrospinal fluid system. Nat. Rev. Neurosci. 16, 445–457 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kumari, P. et al. Neuroinvasion and sleeping sickness following intranasal shot of SARS-CoV-2 in K18-hACE2 mice. Viruses 13, 132 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Iadecola, C., Anrather, J. & Kamel, H. Effects of COVID-19 on the nerve system. Cell 183, 16–27.e11 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, L. W. et al. Influenza-associated neurological problems throughout 2014-2017 in Taiwan. Brain Dev. 40, 799–806 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Radzisauskiene, D., Vitkauskaite, M., Zvinyte, K. & Mameniskiene, R. Neurological problems of pandemic A(H1N1)2009pdm, postpandemic A(H1N1)v, and seasonal influenza A. Brain Behav. 11, e01916 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Dusedau, H. P. et al. Influenza An infection (H1N1) infection causes microglial activation and temporal dysbalance in glutamatergic synaptic transmission. mBio 12, e0177621 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Shukla, P., Mandalla, A., Elrick, M. J. & Venkatesan, A. Clinical symptoms and pathogenesis of severe necrotizing encephalopathy: the user interface in between systemic infection and neurologic injury. Front. Neurol. 12, 628811 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Barbosa-Silva, M. C. et al. Infectious disease-associated encephalopathies. Crit. Care 25, 236 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jeanneret, V., Winkel, D., Risman, A., Shi, H. & Gombolay, G. Post-contagious rhombencephalitis after coronavirus-19 infection: a case report and literature evaluation. J. Neuroimmunol. 357, 577623 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hara, M. et al. COVID-19 post-infectious sleeping sickness providing with delirium as a preliminary symptom. J. Investig. Med. High Impact Case Rep. 9, 23247096211029787 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Picollet-D’hahan, N., Zuchowska, A., Lemeunier, I. & Le Gac, S. Multiorgan-on-a-chip: a systemic technique to design and analyze inter-organ interaction. Trends Biotechnol. 39, 788–810 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Lyu, Z. et al. A neurovascular-unit-on-a-chip for the examination of the corrective capacity of stem cell treatments for ischaemic stroke. Nat. Biomed. Eng. 5, 847–863 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, S. & Schoen, J. Air-liquid user interface cell culture: from respiratory tract epithelium to the female reproductive system. Reprod. Domest. Anim. 54, 38–45 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Jiang, D., Schaefer, N. & Chu, H. W. Air-liquid user interface culture of human and mouse respiratory tract epithelial cells. Methods Mol. Biol. 1809, 91–109 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Topol, E. J. COVID-19 can impact the heart. Science 370, 408–409 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, I. C., Huo, T. I. & Huang, Y. H. Gastrointestinal and liver symptoms in clients with COVID-19. J. Chin. Med Assoc. 83, 521–523 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ertuglu, L. A., Kanbay, A., Afsar, B., Elsurer Afsar, R. & Kanbay, M. COVID-19 and severe kidney injury. Tuberk. Toraks 68, 407–418 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Wang, P., Wu, Y., Chen, W., Zhang, M. & Qin, J. Malignant melanoma-derived exosomes cause endothelial damage and glial activation on a human BBB chip design. Biosensors 12, 89 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chomczynski, P. & Sacchi, N. Single-action technique of RNA seclusion by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162, 156–159 (1987).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rowland, R. & Brandariz-Nunez, A. Analysis of the function of N-linked glycosylation in cell surface area expression, function, and binding residential or commercial properties of SARS-CoV-2 receptor ACE2. Microbiol. Spectr. 9, e0119921 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • - Advertisement -
    Pet News 2Day
    Pet News 2Dayhttps://petnews2day.com
    About the editor Hey there! I'm proud to be the editor of Pet News 2Day. With a lifetime of experience and a genuine love for animals, I bring a wealth of knowledge and passion to my role. Experience and Expertise Animals have always been a central part of my life. I'm not only the owner of a top-notch dog grooming business in, but I also have a diverse and happy family of my own. We have five adorable dogs, six charming cats, a wise old tortoise, four adorable guinea pigs, two bouncy rabbits, and even a lively flock of chickens. Needless to say, my home is a haven for animal love! Credibility What sets me apart as a credible editor is my hands-on experience and dedication. Through running my grooming business, I've developed a deep understanding of various dog breeds and their needs. I take pride in delivering exceptional grooming services and ensuring each furry client feels comfortable and cared for. Commitment to Animal Welfare But my passion extends beyond my business. Fostering dogs until they find their forever homes is something I'm truly committed to. It's an incredibly rewarding experience, knowing that I'm making a difference in their lives. Additionally, I've volunteered at animal rescue centers across the globe, helping animals in need and gaining a global perspective on animal welfare. Trusted Source I believe that my diverse experiences, from running a successful grooming business to fostering and volunteering, make me a credible editor in the field of pet journalism. I strive to provide accurate and informative content, sharing insights into pet ownership, behavior, and care. My genuine love for animals drives me to be a trusted source for pet-related information, and I'm honored to share my knowledge and passion with readers like you.
    -Advertisement-

    Latest Articles

    -Advertisement-

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here
    Captcha verification failed!
    CAPTCHA user score failed. Please contact us!