Wednesday, May 15, 2024
Wednesday, May 15, 2024
HomePet NewsSmall Pets NewsLiver tumour immune microenvironment subtypes and neutrophil heterogeneity

Liver tumour immune microenvironment subtypes and neutrophil heterogeneity

Date:

Related stories

-Advertisement-spot_img
-- Advertisment --
- Advertisement -
  • Binnewies, M. et al. Comprehending the growth immune microenvironment (TIME) for efficient treatment. Nat. Medication. 24, 541– 550 (2018 ).

    CAS.
    PubMed.
    PubMed Central.

    Google Scholar.

  • Thorsson, V. et al. The immune landscape of cancer. Resistance 48, 812– 830 (2018 ).

    CAS.
    PubMed.
    PubMed Central.

    Google Scholar.

  • Li, X. et al. The immunological and metabolic landscape in main and metastatic liver cancer. Nat. Rev. Cancer 21, 541– 557 (2021 ).

    CAS.
    PubMed.

    Google Scholar.

  • Marquardt, J. U., Andersen, J. B. & & Thorgeirsson, S. S. Practical and hereditary deconstruction of the cellular origin in liver cancer. Nat. Rev. Cancer 15, 653– 667 (2015 ).

    CAS.
    PubMed.

    Google Scholar.

  • Finn, R. S. et al. Atezolizumab plus bevacizumab in unresectable hepatocellular cancer. N. Engl. J. Medication. 382, 1894– 1905 (2020 ).

    CAS.
    PubMed.

    Google Scholar.

  • Coffelt, S. B., Wellenstein, M. D. & & de Visser, K. E. Neutrophils in cancer: neutral no more. Nat. Rev. Cancer 16, 431– 446 (2016 ).

    CAS.
    PubMed.

    Google Scholar.

  • Jaillon, S. et al. Neutrophil variety and plasticity in tumour development and treatment. Nat. Rev. Cancer 20, 485– 503 (2020 ).

    CAS.
    PubMed.

    Google Scholar.

  • Shaul, M. E. & & Fridlender, Z. G. Tumour-associated neutrophils in clients with cancer. Nat. Rev. Clin. Oncol. 16, 601– 620 (2019 ).

    PubMed.

    Google Scholar.

  • Ng, L. G., Ostuni, R. & & Hidalgo, A. Heterogeneity of neutrophils. Nat. Rev. Immunol. 19, 255– 265 (2019 ).

    CAS.
    PubMed.

    Google Scholar.

  • Quail, D. F. et al. Neutrophil phenotypes and functions in cancer: an agreement declaration. J. Exp. Medication. 219, e20220011 (2022 ).

    CAS.
    PubMed.
    PubMed Central.

    Google Scholar.

  • Cui, C. et al. Neutrophil elastase selectively eliminates cancer cells and attenuates tumorigenesis. Cell 184, 3163– 3177 (2021 ).

    CAS.
    PubMed.

    Google Scholar.

  • Ponzetta, A. et al. Neutrophils driving non-traditional T cells moderate resistance versus murine sarcomas and picked human growths. Cell 178, 346– 360 (2019 ).

    CAS.
    PubMed.
    PubMed Central.

    Google Scholar.

  • Yang, L. et al. DNA of neutrophil extracellular traps promotes cancer transition through CCDC25. Nature 583, 133– 138 (2020 ).

    ADS.
    CAS.
    PubMed.

    Google Scholar.

  • Szczerba, B. M. et al. Neutrophils escort distributing tumour cells to make it possible for cell cycle development. Nature 566, 553– 557 (2019 ).

    ADS.
    CAS.
    PubMed.

    Google Scholar.

  • Zhang, Q. et al. Landscape and characteristics of single immune cells in hepatocellular cancer. Cell 179, 829– 845( 2019 ).

    CAS.
    PubMed.

    Google Scholar.

  • Sharma, A. et al. Onco-fetal reprogramming of endothelial cells drives immunosuppressive macrophages in hepatocellular cancer. Cell 183, 377– 394 (2020 ).

    CAS.
    PubMed.

    Google Scholar.

  • Ma, L. et al. Single-cell atlas of growth cell development in action to treatment in hepatocellular cancer and intrahepatic cholangiocarcinoma. J. Hepatol. 75, 1397– 1408 (2021 ).

    CAS.
    PubMed.

    Google Scholar.

  • Ma, L. et al. Growth cell biodiversity drives microenvironmental reprogramming in liver cancer. Cancer Cell 36, 418– 430 (2019 ).

    CAS.
    PubMed.
    PubMed Central.

    Google Scholar.

  • Sun, Y. et al. Single-cell landscape of the environment in early-relapse hepatocellular cancer. Cell 184, 404– 421 (2021 ).

    CAS.
    PubMed.

    Google Scholar.

  • Zheng, C. et al. Landscape of penetrating t cells in liver cancer exposed by single-cell sequencing. Cell 169, 1342– 1356 (2017 ).

    CAS.
    PubMed.

    Google Scholar.

  • Zhang, M. et al. Single-cell transcriptomic architecture and intercellular crosstalk of human intrahepatic cholangiocarcinoma. J. Hepatol. 73, 1118– 1130 (2020 ).

    CAS.
    PubMed.

    Google Scholar.

  • Aizarani, N. et al. A human liver cell atlas exposes heterogeneity and epithelial progenitors. Nature 572, 199– 204 (2019 ).

    CAS.
    PubMed.
    PubMed Central.

    Google Scholar.

  • Xie, X. et al. Single-cell transcriptome profiling exposes neutrophil heterogeneity in homeostasis and infection. Nat. Immunol. 21, 1119– 1133 (2020 ).

    CAS.
    PubMed.
    PubMed Central.

    Google Scholar.

  • Zilionis, R. et al. Single-cell transcriptomics of human and mouse lung cancers exposes saved myeloid populations throughout people and types. Resistance 50, 1317– 1334 (2019 ).

    CAS.
    PubMed.
    PubMed Central.

    Google Scholar.

  • Ballesteros, I. et al. Co-option of neutrophil fates by tissue environments. Cell 183, 1282– 1297 (2020 ).

    CAS.
    PubMed.

    Google Scholar.

  • Bagaev, A. et al. Saved pan-cancer microenvironment subtypes anticipate action to immunotherapy. Cancer Cell 39, 845– 865 (2021 ).

    CAS.
    PubMed.

    Google Scholar.

  • Zhang, L. et al. Single-cell analyses notify systems of myeloid-targeted treatments in colon cancer. Cell 181, 442– 459 (2020 ).

    CAS.
    PubMed.

    Google Scholar.

  • Kiss, M. et al. IL1β promotes immune suppression in the growth microenvironment independent of the inflammasome and gasdermin D. Cancer Immunol. Res. 9, 309– 323 (2021 ).

    CAS.
    PubMed.

    Google Scholar.

  • Feig, C. et al. Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer. Proc. Natl Acad. Sci. U.S.A. 110, 20212– 20217 (2013 ).

    ADS.
    CAS.
    PubMed.
    PubMed Central.

    Google Scholar.

  • Cancer Genome Atlas Research Study Network. Comprehensive and integrative genomic characterization of hepatocellular cancer. Cell 169, 1327– 1341 (2017 ).

    Google Scholar.

  • Farshidfar, F. et al. Integrative genomic analysis of cholangiocarcinoma recognizes unique IDH-mutant molecular profiles. Cell Rep. 18, 2780– 2794 (2017 ).

    CAS.
    PubMed.
    PubMed Central.

    Google Scholar.

  • Xue, R. et al. Genomic and transcriptomic profiling of combined hepatocellular and intrahepatic cholangiocarcinoma exposes unique molecular subtypes. Cancer Cell 35, 932– 947 (2019 ).

    CAS.
    PubMed.
    PubMed Central.

    Google Scholar.

  • Wu, R. et al. Thorough analysis of spatial architecture in main liver cancer. Sci. Adv. 7, eabg3750 (2021 ).

    ADS.
    CAS.
    PubMed.
    PubMed Central.

    Google Scholar.

  • Xiang, X. et al. IDH anomaly subgroup status relates to intratumor heterogeneity and the growth microenvironment in intrahepatic cholangiocarcinoma. Adv. Sci. 8, e2101230 (2021 ).

    Google Scholar.

  • Wu, S. Z. et al. A single-cell and spatially solved atlas of human breast cancers. Nat. Genet. 53, 1334– 1347 (2021 ).

    CAS.
    PubMed.
    PubMed Central.

    Google Scholar.

  • Ramachandran, P., Matchett, K. P., Dobie, R., Wilson-Kanamori, J. R. & & Henderson, N. C. Single-cell innovations in hepatology: brand-new insights into liver biology and illness pathogenesis. Nat. Rev. Gastroenterol. Hepatol. 17, 457– 472 (2020 ).

    PubMed.

    Google Scholar.

  • Wculek, S. K. & & Malanchi, I. Neutrophils support lung colonization of metastasis-initiating breast cancer cells. Nature 528, 413– 417 (2015 ).

    ADS.
    CAS.
    PubMed.
    PubMed Central.

    Google Scholar.

  • Boivin, G. et al. Long lasting and regulated deficiency of neutrophils in mice. Nat. Commun. 11, 2762 (2020 ).

    ADS.
    CAS.
    PubMed.
    PubMed Central.

    Google Scholar.

  • Remmerie, A. et al. Osteopontin expression recognizes a subset of hired macrophages unique from kupffer cells in the fatty liver. Resistance 53, 641– 657 (2020 ).

    CAS.
    PubMed.
    PubMed Central.

    Google Scholar.

  • Guilliams, M. et al. Spatial proteogenomics exposes unique and evolutionarily saved hepatic macrophage specific niches. Cell 185, 379– 396 (2022 ).

    CAS.
    PubMed.
    PubMed Central.

    Google Scholar.

  • Zhu, A. X. et al. Molecular correlates of scientific action and resistance to atezolizumab in mix with bevacizumab in sophisticated hepatocellular cancer. Nat. Medication. 28, 1599– 1611 (2022 ).

    CAS.
    PubMed.

    Google Scholar.

  • Seehawer, M. et al. Necroptosis microenvironment directs family tree dedication in liver cancer. Nature 562, 69– 75 (2018 ).

    ADS.
    CAS.
    PubMed.
    PubMed Central.

    Google Scholar.

  • Satija, R., Farrell, J. A., Gennert, D., Schier, A. F. & & Regev, A. Spatial restoration of single-cell gene expression information. Nat. Biotechnol. 33, 495– 502 (2015 ).

    CAS.
    PubMed.
    PubMed Central.

    Google Scholar.

  • Wolf, F. A., Angerer, P. & & Theis, F. J. SCANPY: massive single-cell gene expression information analysis. Genome Biol. 19, 15 (2018 ).

    PubMed.

    Google Scholar.

  • Puram, S. V. et al. Single-cell transcriptomic analysis of main and metastatic growth communities in head and neck cancer. Cell 171, 1611– 1624 (2017 ).

    CAS.
    PubMed.
    PubMed Central.

    Google Scholar.

  • Muhl, L. et al. Single-cell analysis discovers fibroblast heterogeneity and requirements for fibroblast and mural cell recognition and discrimination. Nat. Commun. 11, 3953 (2020 ).

    ADS.
    CAS.
    PubMed.
    PubMed Central.

    Google Scholar.

  • Aran, D. et al. Reference-based analysis of lung single-cell sequencing exposes a transitional profibrotic macrophage. Nat. Immunol. 20, 163– 172 (2019 ).

    CAS.
    PubMed.
    PubMed Central.

    Google Scholar.

  • Vento-Tormo, R. et al. Single-cell restoration of the early maternal-fetal user interface in human beings. Nature 563, 347– 353 (2018 ).

    ADS.
    CAS.
    PubMed.
    PubMed Central.

    Google Scholar.

  • Gulati, G. S. et al. Single-cell transcriptional variety is a trademark of developmental capacity. Science 367, 405– 411 (2020 ).

    ADS.
    CAS.
    PubMed.
    PubMed Central.

    Google Scholar.

  • Qiu, X. et al. Single-cell mRNA metrology and differential analysis with Census. Nat. Techniques 14, 309– 315 (2017 ).

    CAS.
    PubMed.
    PubMed Central.

    Google Scholar.

  • Lange, M. et al. CellRank for directed single-cell fate mapping. Nat. Techniques 19, 159– 170 (2022 ).

    CAS.
    PubMed.
    PubMed Central.

    Google Scholar.

  • Aibar, S. et al. BEAUTIFUL: single-cell regulative network reasoning and clustering. Nat. Techniques 14, 1083– 1086 (2017 ).

    CAS.
    PubMed.
    PubMed Central.

    Google Scholar.

  • Welch, J. D. et al. Single-cell multi-omic combination compares and contrasts functions of brain cell identity. Cell 177, 1873– 1887 (2019 ).

    CAS.
    PubMed.
    PubMed Central.

    Google Scholar.

  • Schürch, C. M. et al. Collaborated cellular communities manage antitumoral resistance at the colorectal cancer intrusive front. Cell 182, 1341– 1359 (2020 ).

    PubMed.
    PubMed Central.

    Google Scholar.

  • Fan, Y. et al. Targeting several cell death paths extends the service life and protects the function of human and mouse neutrophils for transfusion. Sci. Transl. Medication. 13, eabb1069 (2021 ).

    CAS.
    PubMed.

    Google Scholar.

  • - Advertisement -
    Pet News 2Day
    Pet News 2Dayhttps://petnews2day.com
    About the editor Hey there! I'm proud to be the editor of Pet News 2Day. With a lifetime of experience and a genuine love for animals, I bring a wealth of knowledge and passion to my role. Experience and Expertise Animals have always been a central part of my life. I'm not only the owner of a top-notch dog grooming business in, but I also have a diverse and happy family of my own. We have five adorable dogs, six charming cats, a wise old tortoise, four adorable guinea pigs, two bouncy rabbits, and even a lively flock of chickens. Needless to say, my home is a haven for animal love! Credibility What sets me apart as a credible editor is my hands-on experience and dedication. Through running my grooming business, I've developed a deep understanding of various dog breeds and their needs. I take pride in delivering exceptional grooming services and ensuring each furry client feels comfortable and cared for. Commitment to Animal Welfare But my passion extends beyond my business. Fostering dogs until they find their forever homes is something I'm truly committed to. It's an incredibly rewarding experience, knowing that I'm making a difference in their lives. Additionally, I've volunteered at animal rescue centers across the globe, helping animals in need and gaining a global perspective on animal welfare. Trusted Source I believe that my diverse experiences, from running a successful grooming business to fostering and volunteering, make me a credible editor in the field of pet journalism. I strive to provide accurate and informative content, sharing insights into pet ownership, behavior, and care. My genuine love for animals drives me to be a trusted source for pet-related information, and I'm honored to share my knowledge and passion with readers like you.
    -Advertisement-

    Latest Articles

    -Advertisement-

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here
    Captcha verification failed!
    CAPTCHA user score failed. Please contact us!