Wednesday, May 1, 2024
Wednesday, May 1, 2024
HomePet NewsSmall Pets NewsFate mapping exposes combined embryonic origin and distinct developmental codes of mouse...

Fate mapping exposes combined embryonic origin and distinct developmental codes of mouse forebrain septal nerve cells

Date:

Related stories

-Advertisement-spot_img
-- Advertisment --
- Advertisement -
  • Andy, O. J. & & Stephan, H. The septum in the human brain. J. Compensation. Neurol. 133, 383– 410 (1968 ).

    Short Article.
    CAS.
    PubMed.

    Google Scholar.

  • Stephan, H. & & Andy, O. J. Quantitative contrasts of brain structures from insectivores to primates. Am. Zool. 4, 59– 74 (1964 ).

    Short Article.
    CAS.
    PubMed.

    Google Scholar.

  • Swanson, L. W. & & Cowan, W. M. The connections of the septal area in the rat. J. Compensation. Neurol. 186, 621– 655 (1979 ).

    Short Article.
    CAS.
    PubMed.

    Google Scholar.

  • Bartus, R. T., Dean, R. L. III, Beer, B. & & Lippa, A. S. The cholinergic hypothesis of geriatric memory dysfunction. Science 217, 408– 414 (1982 ).

    Short Article.
    CAS.
    PubMed.

    Google Scholar.

  • Whitehouse, P. J. et al. Alzheimer’s illness and senile dementia: loss of nerve cells in the basal forebrain. Science 215, 1237– 1239 (1982 ).

    Short Article.
    CAS.
    PubMed.

    Google Scholar.

  • Schliebs, R. & & Arendt, T. The significance of the cholinergic system in the brain throughout aging and in Alzheimer’s illness. J. Neural Transm. 113, 1625– 1644 (2006 ).

    Short Article.
    CAS.
    PubMed.

    Google Scholar.

  • Apartis, E., Poindessous-Jazat, F. R., Lamour, Y. A. & & Bassant, M. H. Loss of rhythmically breaking nerve cells in rat median septum following selective sore of septohippocampal cholinergic system. J. Neurophysiol. 79, 1633– 1642 (1998 ).

    Short Article.
    CAS.
    PubMed.

    Google Scholar.

  • Freund, T. F. & & Antal, M. GABA-containing nerve cells in the septum control repressive interneurons in the hippocampus. Nature 336, 170– 173 (1988 ).

    Short Article.
    CAS.
    PubMed.

    Google Scholar.

  • Frotscher, M. & & Leranth, C. Cholinergic innervation of the rat hippocampus as exposed by choline acetyltransferase immunocytochemistry: a combined light and electron tiny research study. J. Compensation. Neurol. 239, 237– 246 (1985 ).

    Short Article.
    CAS.
    PubMed.

    Google Scholar.

  • Kohler, C., Chan-Palay, V. & & Wu, J. Y. Septal nerve cells including glutamic acid decarboxylase immunoreactivity job to the hippocampal area in the rat brain. Anat. Embryol. 169, 41– 44 (1984 ).

    Short Article.
    CAS.

    Google Scholar.

  • Toth, K., Freund, T. F. & & Miles, R. Disinhibition of rat hippocampal pyramidal cells by GABAergic afferents from the septum. J. Physiol. 500, 463– 474 (1997 ).

    Short Article.
    CAS.
    PubMed.
    PubMed Central.

    Google Scholar.

  • Yoder, R. M. & & Pang, K. C. Participation of GABAergic and cholinergic median septal nerve cells in hippocampal theta rhythm. Hippocampus 15, 381– 392 (2005 ).

    Short Article.
    CAS.
    PubMed.

    Google Scholar.

  • Huh, C. Y., Goutagny, R. & & Williams, S. Glutamatergic nerve cells of the mouse median septum and diagonal band of Broca synaptically drive hippocampal pyramidal cells: importance for hippocampal theta rhythm. J. Neurosci. 30, 15951– 15961 (2010 ).

    Short Article.
    CAS.
    PubMed.
    PubMed Central.

    Google Scholar.

  • Colom, L. V., Castaneda, M. T., Reyna, T., Hernandez, S. & & Garrido-Sanabria, E. Characterization of median septal glutamatergic nerve cells and their forecast to the hippocampus. Synapse 58, 151– 164 (2005 ).

    Short Article.
    CAS.
    PubMed.

    Google Scholar.

  • Sotty, F. et al. Unique electrophysiological residential or commercial properties of glutamatergic, cholinergic and GABAergic rat septohippocampal nerve cells: unique ramifications for hippocampal rhythmicity. J. Physiol. 551, 927– 943 (2003 ).

    Short Article.
    CAS.
    PubMed.
    PubMed Central.

    Google Scholar.

  • Toth, K., Borhegyi, Z. & & Freund, T. F. Postsynaptic targets of GABAergic hippocampal nerve cells in the median septum-diagonal band of broca complex. J. Neurosci. 13, 3712– 3724 (1993 ).

    Short Article.
    CAS.
    PubMed.
    PubMed Central.

    Google Scholar.

  • Leranth, C. & & Frotscher, M. Company of the septal area in the rat brain: cholinergic-GABAergic affiliations and the termination of hippocampo-septal fibers. J. Compensation. Neurol. 289, 304– 314 (1989 ).

    Short Article.
    CAS.
    PubMed.

    Google Scholar.

  • Sheehan, T. P., Chambers, R. A. & & Russell, D. S. Policy of affect by the lateral septum: ramifications for neuropsychiatry. Brain Res. Brain Res. Rev. 46, 71– 117 (2004 ).

    Short Article.
    PubMed.

    Google Scholar.

  • Risold, P. Y. & & Swanson, L. W. Chemoarchitecture of the rat lateral septal nucleus. Brain Res. Brain Res. Rev. 24, 91– 113 (1997 ).

    Short Article.
    CAS.
    PubMed.

    Google Scholar.

  • Lee, E. H., Lin, Y. P. & & Yin, T. H. Results of lateral and median septal sores on numerous activity and reactivity procedures in rats. Physiol. Behav. 42, 97– 102 (1988 ).

    Short Article.
    CAS.
    PubMed.

    Google Scholar.

  • Oddie, S. D. & & Bland, B. H. Hippocampal development theta activity and motion choice. Neurosci. Biobehav. Rev. 22, 221– 231 (1998 ).

    Short Article.
    CAS.
    PubMed.

    Google Scholar.

  • Bland, B. H. & & Oddie, S. D. Theta band oscillation and synchrony in the hippocampal development and associated structures: the case for its function in sensorimotor combination. Behav. Brain Res. 127, 119– 136 (2001 ).

    Short Article.
    CAS.
    PubMed.

    Google Scholar.

  • Caplan, J. B. et al. Human theta oscillations associated with sensorimotor combination and spatial knowing. J. Neurosci. 23, 4726– 4736 (2003 ).

    Short Article.
    CAS.
    PubMed.
    PubMed Central.

    Google Scholar.

  • Fuhrmann, F. et al. Mobility, theta oscillations, and the speed-correlated shooting of hippocampal nerve cells are managed by a median septal glutamatergic circuit. Nerve Cell 86, 1253– 1264 (2015 ).

    Short Article.
    CAS.
    PubMed.

    Google Scholar.

  • Tsanov, M. Differential and complementary functions of median and lateral septum in the orchestration of limbic oscillations and signal combination. Eur. J. Neurosci. 48, 2783– 2794 (2018 ).

    Short Article.
    PubMed.

    Google Scholar.

  • Bayer, S. A. The advancement of the septal area in the rat. I. Neurogenesis taken a look at with 3H-thymidine autoradiography. J. Compensation. Neurol. 183, 89– 106 (1979 ).

    Short Article.
    CAS.
    PubMed.

    Google Scholar.

  • Creps, E. S. Time of nerve cell origin in preoptic and septal locations of the mouse: an autoradiographic research study. J. Compensation. Neurol. 157, 161– 243 (1974 ).

    Short Article.
    CAS.
    PubMed.

    Google Scholar.

  • Horvath, S., Szabo, K., Gulyas, M. & & Palkovits, M. Ontogenetic advancement of septal nuclei in the rat. Anat. Embryol. 177, 267– 275 (1988 ).

    Short Article.
    CAS.

    Google Scholar.

  • Schambra, U. B., Sulik, K. K., Petrusz, P. & & Lauder, J. M. Ontogeny of cholinergic nerve cells in the mouse forebrain. J. Compensation. Neurol. 288, 101– 122 (1989 ).

    Short Article.
    CAS.
    PubMed.

    Google Scholar.

  • Wei, B. et al. The onion skin-like company of the septum emerges from several embryonic origins to form several adult neuronal fates. Neuroscience 222, 110– 123 (2012 ).

    Short Article.
    CAS.
    PubMed.

    Google Scholar.

  • Garcia-Lopez, M. et al. Histogenetic compartments of the mouse centromedial and extended amygdala based upon gene expression patterns throughout advancement. J. Compensation. Neurol. 506, 46– 74 (2008 ).

    Short Article.
    PubMed.
    PubMed Central.

    Google Scholar.

  • Puelles, L. et al. Pallial and subpallial derivatives in the embryonic chick and mouse telencephalon, traced by the expression of the genes Dlx-2, Emx-1, Nkx-2.1, Pax-6, and Tbr-1. J. Compensation. Neurol. 424, 409– 438 (2000 ).

    Short Article.
    CAS.
    PubMed.

    Google Scholar.

  • Flames, N. et al. Delineation of several subpallial progenitor domains by the combinatorial expression of transcriptional codes. J. Neurosci. 27, 9682– 9695 (2007 ).

    Short Article.
    CAS.
    PubMed.
    PubMed Central.

    Google Scholar.

  • Kiss, J., Patel, A. J., Baimbridge, K. G. & & Freund, T. F. Topographical localization of nerve cells including parvalbumin and choline acetyltransferase in the median septum-diagonal band area of the rat. Neuroscience 36, 61– 72 (1990 ).

    Short Article.
    CAS.
    PubMed.

    Google Scholar.

  • Kiss, J., Magloczky, Z., Somogyi, J. & & Freund, T. F. Circulation of calretinin-containing nerve cells relative to other neurochemically determined cell key ins the median septum of the rat. Neuroscience 78, 399– 410 (1997 ).

    Short Article.
    CAS.
    PubMed.

    Google Scholar.

  • Kiss, J., Patel, A. J. & & Freund, T. F. Circulation of septohippocampal nerve cells including parvalbumin or choline acetyltransferase in the rat brain. J. Compensation. Neurol. 298, 362– 372 (1990 ).

    Short Article.
    CAS.
    PubMed.

    Google Scholar.

  • Zhao, C., Eisinger, B. & & Gammie, S. C. Characterization of GABAergic nerve cells in the mouse lateral septum: a double fluorescence in situ hybridization and immunohistochemical research study utilizing tyramide signal amplification. PLoS ONE 8, e73750 (2013 ).

    Short Article.
    CAS.
    PubMed.
    PubMed Central.

    Google Scholar.

  • Celio, M. R. Calbindin D-28k and parvalbumin in the rat nerve system. Neuroscience 35, 375– 475 (1990 ).

    Short Article.
    CAS.
    PubMed.

    Google Scholar.

  • Lin, W., McKinney, K., Liu, L., Lakhlani, S. & & Jennes, L. Circulation of vesicular glutamate transporter-2 messenger ribonucleic Acid and protein in the septum-hypothalamus of the rat. Endocrinology 144, 662– 670 (2003 ).

    Short Article.
    CAS.
    PubMed.

    Google Scholar.

  • Hajszan, T., Alreja, M. & & Leranth, C. Intrinsic vesicular glutamate transporter 2-immunoreactive input to septohippocampal parvalbumin-containing nerve cells: unique glutamatergic regional circuit cells. Hippocampus 14, 499– 509 (2004 ).

    Short Article.
    PubMed.

    Google Scholar.

  • Manseau, F., Danik, M. & & Williams, S. A practical glutamatergic neurone network in the median septum and diagonal band location. J. Physiol. 566, 865– 884 (2005 ).

    Short Article.
    CAS.
    PubMed.
    PubMed Central.

    Google Scholar.

  • Kessaris, N. et al. Contending waves of oligodendrocytes in the forebrain and postnatal removal of an embryonic family tree. Nat. Neurosci. 9, 173– 179 (2006 ).

    Short Article.
    CAS.
    PubMed.

    Google Scholar.

  • Magno, L. et al. NKX2-1 is needed in the embryonic septum for cholinergic system advancement, discovering, and memory. Cell Rep. 20, 1572– 1584 (2017 ).

    Short Article.
    CAS.
    PubMed.
    PubMed Central.

    Google Scholar.

  • Rubin, A. N. et al. The germinal zones of the basal ganglia however not the septum create GABAergic interneurons for the cortex. J. Neurosci. 30, 12050– 12062 (2010 ).

    Short Article.
    CAS.
    PubMed.
    PubMed Central.

    Google Scholar.

  • Fogarty, M. et al. Spatial hereditary pattern of the embryonic neuroepithelium produces GABAergic interneuron variety in the adult cortex. J. Neurosci. 27, 10935– 10946 (2007 ).

    Short Article.
    CAS.
    PubMed.
    PubMed Central.

    Google Scholar.

  • Flandin, P., Kimura, S. & & Rubenstein, J. L. The progenitor zone of the forward median ganglionic eminence needs Nkx2-1 to create the majority of the globus pallidus however couple of neocortical interneurons. J. Neurosci. 30, 2812– 2823 (2010 ).

    Short Article.
    CAS.
    PubMed.
    PubMed Central.

    Google Scholar.

  • Gelman, D. M. et al. The embryonic preoptic location is an unique source of cortical GABAergic interneurons. J. Neurosci. 29, 9380– 9389 (2009 ).

    Short Article.
    CAS.
    PubMed.
    PubMed Central.

    Google Scholar.

  • Bielle, F. et al. Several origins of Cajal-Retzius cells at the borders of the establishing pallium. Nat. Neurosci. 8, 1002– 1012 (2005 ).

    Short Article.
    CAS.
    PubMed.

    Google Scholar.

  • Cremona, M., Colombo, E., Andreazzoli, M., Cossu, G. & & Broccoli, V. Bsx, an evolutionary saved Brain Particular homeoboX gene revealed in the septum, epiphysis, mammillary bodies and arcuate nucleus. Gene Expr. Patterns 4, 47– 51 (2004 ).

    Short Article.
    CAS.
    PubMed.

    Google Scholar.

  • Fragkouli, A., van Wijk, N. V., Lopes, R., Kessaris, N. & & Pachnis, V. LIM homeodomain transcription factor-dependent spec of bipotential MGE progenitors into cholinergic and GABAergic striatal interneurons. Advancement 136, 3841– 3851 (2009 ).

    Short Article.
    CAS.
    PubMed.
    PubMed Central.

    Google Scholar.

  • Du, T., Xu, Q., Ocbina, P. J. & & Anderson, S. A. NKX2.1 defines cortical interneuron fate by triggering Lhx6. Advancement 135, 1559– 1567 (2008 ).

    Short Article.
    CAS.
    PubMed.

    Google Scholar.

  • Sakkou, M. et al. A function for brain-specific homeobox aspect Bsx in the control of hyperphagia and locomotory habits. Cell Metab. 5, 450– 463 (2007 ).

    Short Article.
    CAS.
    PubMed.

    Google Scholar.

  • Watanabe, K., Irie, K., Hanashima, C., Takebayashi, H. & & Sato, N. Diencephalic progenitors add to the posterior septum through rostral migration along the hippocampal axonal path. Sci. Rep. 8, 11728 (2018 ).

    Short Article.
    PubMed.
    PubMed Central.

    Google Scholar.

  • Giacobini, P. et al. Hepatocyte development aspect serves as a motogen and assistance signal for gonadotropin hormone-releasing hormone-1 neuronal migration. J. Neurosci. 27, 431– 445 (2007 ).

    Short Article.
    CAS.
    PubMed.
    PubMed Central.

    Google Scholar.

  • Iyer, A. & & Tole, S. Neuronal variety and mutual connection in between the vertebrate hippocampus and septum. Wiley Interdiscip. Rev. Dev. Biol. 9, e370 (2020 ).

    Short Article.
    PubMed.

    Google Scholar.

  • Lopes, R., Verhey van Wijk, N., Neves, G. & & Pachnis, V. Transcription aspect LIM homeobox 7 (Lhx7) keeps subtype identity of cholinergic interneurons in the mammalian striatum. Proc. Natl Acad. Sci. U.S.A. 109, 3119– 3124 (2012 ).

    Short Article.
    CAS.
    PubMed.
    PubMed Central.

    Google Scholar.

  • McArthur, T. & & Ohtoshi, A. A brain-specific homeobox gene, Bsx, is important for correct postnatal development and nursing. Mol. Cell Biol. 27, 5120– 5127 (2007 ).

    Short Article.
    CAS.
    PubMed.
    PubMed Central.

    Google Scholar.

  • Mano, H., Asaoka, Y., Kojima, D. & & Fukada, Y. Brain-specific homeobox Bsx defines identity of pineal gland in between serially homologous photoreceptive organs in zebrafish. Commun. Biol. 2, 364 (2019 ).

    Short Article.
    PubMed.
    PubMed Central.

    Google Scholar.

  • Schredelseker, T. & & Driever, W. Bsx manages pineal complex advancement. Advancement https://doi.org/10.1242/dev.163477 (2018 ).

  • Schredelseker, T., Veit, F., Dorsky, R. I. & & Driever, W. Bsx is important for distinction of several neuromodulatory cell populations in the secondary prosencephalon. Front. Neurosci. 14, 525 (2020 ).

    Short Article.
    PubMed.
    PubMed Central.

    Google Scholar.

  • Lee, B. et al. Brain-specific homeobox aspect as a target selector for glucocorticoid receptor in energy balance. Mol. Cell. Biol. 33, 2650– 2658 (2013 ).

    Short Article.
    CAS.
    PubMed.
    PubMed Central.

    Google Scholar.

  • Oddie, S. D., Stefanek, W., Kirk, I. J. & & Bland, B. H. Intraseptal procaine eliminates hypothalamic stimulation-induced wheel-running and hippocampal theta field activity in rats. J. Neurosci. 16, 1948– 1956 (1996 ).

    Short Article.
    CAS.
    PubMed.
    PubMed Central.

    Google Scholar.

  • Leranth, C. & & Kiss, J. A population of supramammillary location calretinin nerve cells ending on median septal location cholinergic and lateral septal location calbindin-containing cells are aspartate/glutamatergic. J. Neurosci. 16, 7699– 7710 (1996 ).

    Short Article.
    CAS.
    PubMed.
    PubMed Central.

    Google Scholar.

  • Harfe, B. D. et al. Proof for an expansion-based temporal Shh gradient in defining vertebrate digit identities. Cell 118, 517– 528 (2004 ).

    Short Article.
    CAS.
    PubMed.

    Google Scholar.

  • Mao, X., Fujiwara, Y., Chapdelaine, A., Yang, H. & & Orkin, S. H. Activation of EGFP expression by Cre-mediated excision in a brand-new ROSA26 press reporter mouse pressure. Blood 97, 324– 326 (2001 ).

    Short Article.
    CAS.
    PubMed.

    Google Scholar.

  • Srinivas, S. et al. Cre press reporter stress produced by targeted insertion of EYFP and ECFP into the ROSA26 locus. BMC Dev. Biol. 1, 4 (2001 ).

    Short Article.
    CAS.
    PubMed.
    PubMed Central.

    Google Scholar.

  • Madisen, L. et al. A robust and high-throughput Cre reporting and characterization system for the entire mouse brain. Nat. Neurosci. 13, 133– 140 (2010 ).

    Short Article.
    CAS.
    PubMed.

    Google Scholar.

  • Lee, E. C. et al. An extremely effective Escherichia coli-based chromosome engineering system adjusted for recombinogenic targeting and subcloning of BAC DNA. Genomics 73, 56– 65 (2001 ).

    Short Article.
    CAS.
    PubMed.

    Google Scholar.

  • Shimshek, D. R. et al. Codon-improved Cre recombinase (iCre) expression in the mouse. Genesis 32, 19– 26 (2002 ).

    Short Article.
    CAS.
    PubMed.

    Google Scholar.

  • McKenzie, I. A. et al. Motor ability knowing needs active main myelination. Science 346, 318– 322 (2014 ).

    Short Article.
    CAS.
    PubMed.
    PubMed Central.

    Google Scholar.

  • Paxinos, G., Franklin, K. B. J. & & Franklin, K. B. J. The Mouse Brain In Stereotaxic Coordinates Second edn. (Academic Press, 2001).

  • - Advertisement -
    Pet News 2Day
    Pet News 2Dayhttps://petnews2day.com
    About the editor Hey there! I'm proud to be the editor of Pet News 2Day. With a lifetime of experience and a genuine love for animals, I bring a wealth of knowledge and passion to my role. Experience and Expertise Animals have always been a central part of my life. I'm not only the owner of a top-notch dog grooming business in, but I also have a diverse and happy family of my own. We have five adorable dogs, six charming cats, a wise old tortoise, four adorable guinea pigs, two bouncy rabbits, and even a lively flock of chickens. Needless to say, my home is a haven for animal love! Credibility What sets me apart as a credible editor is my hands-on experience and dedication. Through running my grooming business, I've developed a deep understanding of various dog breeds and their needs. I take pride in delivering exceptional grooming services and ensuring each furry client feels comfortable and cared for. Commitment to Animal Welfare But my passion extends beyond my business. Fostering dogs until they find their forever homes is something I'm truly committed to. It's an incredibly rewarding experience, knowing that I'm making a difference in their lives. Additionally, I've volunteered at animal rescue centers across the globe, helping animals in need and gaining a global perspective on animal welfare. Trusted Source I believe that my diverse experiences, from running a successful grooming business to fostering and volunteering, make me a credible editor in the field of pet journalism. I strive to provide accurate and informative content, sharing insights into pet ownership, behavior, and care. My genuine love for animals drives me to be a trusted source for pet-related information, and I'm honored to share my knowledge and passion with readers like you.
    -Advertisement-

    Latest Articles

    -Advertisement-

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here
    Captcha verification failed!
    CAPTCHA user score failed. Please contact us!