Sunday, May 12, 2024
Sunday, May 12, 2024
HomePet NewsExotic Pet NewsTemperature-robust rapid-eye-movement sleep and sluggish wave sleep in the lizard Laudakia vulgaris

Temperature-robust rapid-eye-movement sleep and sluggish wave sleep in the lizard Laudakia vulgaris

Date:

Related stories

-Advertisement-spot_img
-- Advertisment --
- Advertisement -
  • Tononi, G. & Cirelli, C. Sleep function and synaptic homeostasis. Sleep. Med. Rev. 10, 49–62 (2006).

    Article 
    PubMed 

    Google Scholar 

  • Campbell, S. S., Toblew, I. & Tobler, I. Animal sleep: an evaluation of sleep duration throughout phylogeny. Neurosci. Biobehav. Rev. 8, 269–300 (1984).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Nicolau, M. C., Akaârir, M., Gamundí, A., González, J. & Rial, R. V. Why we sleep: the evolutionary path to the mammalian sleep. Prog. Neurobiol. 62, 379–406 (2000).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Siegel, J. M. Clues to the functions of mammalian sleep. Nature 437, 1264–1271 (2005).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • McNaramara, P., Nunn, C. L. & Barton, R. A. Evolution of Sleep: Phylogenetic and Functional Perspectives (Cambridge University Press, 2010).

  • Joiner, W. J. Unraveling the Evolutionary Determinants of Sleep. Curr. Biol. 26, R1073–R1087 (2016).

  • Saper, C. B., Fuller, P. M., Pedersen, N. P., Lu, J. & Scammell, T. E. Sleep state changing. Neuron 68, 1023–1042 (2010).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Susin, E. & Destexhe, A. Cellular associates of wakefulness and slow-wave sleep: proof for an essential function of inhibition. Curr. Opin. Physiol. 15, 68–73 (2020).

    Article 

    Google Scholar 

  • Levenstein, D., Buzsáki, G. & Rinzel, J. NREM oversleep the rodent neocortex and hippocampus shows excitable characteristics. Nat. Commun. 10, 1–12 (2019).

    Article 

    Google Scholar 

  • Buzsáki, G. Hippocampal sharp wave-ripple: a cognitive biomarker for episodic memory and preparation. Hippocampus 25, 1073–1188 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Blumberg, M. S., Lesku, J. A., Libourel, P. A., Schmidt, M. H. & Rattenborg, N. C. What Is RAPID EYE MOVEMENT Sleep? Curr. Biol. 30, R38–R49 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Destexhe, A., Contreras, D. & Steriade, M. Spatiotemporal analysis of regional field capacities and system discharges in cat cortex throughout natural wake and sleep states. J. Neurosci. 19, 4595–4608 (1999).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Orem, J., Netick, A. & Dement, W. C. Breathing throughout sleep and wakefulness in the cat. Respir. Physiol. 30, 265–289 (1977).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Peever, J. & Fuller, P. M. The biology of rapid eye movement. Curr. Biol. 27, R1237–R1248 (2017).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Xu, M. et al. Basal forebrain circuit for sleep-wake control. Nat. Neurosci. 18, 1641–1647 (2015). 18:11.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Scammell, T. E., Arrigoni, E. & Lipton, J. O. Neural circuitry of wakefulness and sleep. Neuron 93, 747–765 (2017).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Herrera, C. G. et al. Hypothalamic feedforward inhibition of thalamocortical network manages stimulation and awareness. Nat. Neurosci. 19, 290–298 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Amini-Sereshki, L. & Zarrindast, M. R. Brain stem tonic inhibition of thermoregulation in the rat. Am. J. Physiol. 247, R154–R159 (1984).

    PubMed 
    CAS 

    Google Scholar 

  • Halvorson, I. & Thornhill, J. Posterior hypothalamic stimulation of anesthetized normothermic and hypothermic rats stimulates shivering thermogenesis. Brain Res. 610, 208–215 (1993).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Nagashima, K., Nakai, S., Tanaka, M. & Kanosue, K. Neuronal circuitries associated with thermoregulation. Autonomic Neurosci. 85, 18–25 (2000).

    Article 
    CAS 

    Google Scholar 

  • Naumann, R. K. et al. The reptilian brain. Curr. Biol. 25, R317–R321 (2015).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Narikiyo, K. et al. The claustrum collaborates cortical slow-wave activity. Nat. Neurosci. 23, 741–753 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Smith, J. B., Lee, A. K. & Jackson, J. The claustrum. Curr. Biol. 30, R1401–R1406 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Vorster, A. P. & Born, J. Sleep and memory in mammals, birds and invertebrates. Neurosci. Biobehav. Rev. 50, 103–119 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Rattenborg, N. C., Martinez-Gonzalez, D., Roth, T. C., & Pravosudo, V. V. Hippocampal memory combination throughout sleep: a contrast of mammals and birds. Biol. Rev. 86, 658–691 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Maingret, N., Girardeau, G., Todorova, R., Goutierre, M. & Zugaro, M. Hippocampo-cortical coupling moderates memory combination throughout sleep. Nat. Neurosci. 19, 959–964 (2016).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Rattenborg, N. C., Amlaner, C. J. & Lima, S. L. Behavioral, neurophysiological and evolutionary point of views on unihemispheric sleep. Neurosci. Biobehav. Rev. 24, 817–842 (2000).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Rattenborg, N. C., Lesku, J. A. & Libourel, P. A. Sleep in Nonmammalian vertebrates. in Principles and Practice of Sleep Medicine. Vol 1 (eds. Kryger, M. H. et al.) 106–120 (Elsevier, 2022).

  • Libourel, P. A. & Herrel, A. Sleep in amphibians and reptiles: an evaluation and an initial analysis of evolutionary patterns. Biol. Rev. Camb. Philos. Soc. 91, 833–866 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Striedter, G. F. Evolution of the hippocampus in reptiles and birds. J. Comp. Neurol. 524, 496–517 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Peyrethon, J. & Dusan-Peyrethon, D. Polygraphic research study of the wakefulness-sleep cycle of a teleostean (Tinca tinca). C. R. Seances Soc. Biol. Fil. 161, 2533–2537 (1967).

    PubMed 
    CAS 

    Google Scholar 

  • Tauber, E. S., Roffwarg, H. P. & Weitzman, E. D. Eye motions and electroencephalogram activity throughout sleep in diurnal lizards. Nature 212, 1612–1613 (1966).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Flanigan, W. F. Sleep and wakefulness in iguanid lizards, Ctenosaura pectinata and Iguana iguana. Brain Behav. Evol. 8, 401–436 (1973).

    Article 
    PubMed 

    Google Scholar 

  • Karmanova, I. G., Belekhova, M. G. & Churnosov, E. VBehavioral and electrographic expression of natural sleep and wakefulness in reptiles. Fiziologicheskii Zh . SSSR Im. I. M. Sechenova 57, 504–511 (1971).

    CAS 

    Google Scholar 

  • Heraghty, J. L., Hilliard, T. N., Henderson, A. J. & Fleming, P. J. The physiology of sleep in babies. Arch. Dis. Child 93, 982–985 (2008).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Sokoloff, G. et al. Twitches emerge postnatally throughout peaceful sleep in human babies and are integrated with sleep spindles. Curr. Biol. 31, 3426–3432.e4 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Huntley, A. C. Electrophysiological and Behavioral Correlates of Sleep in The Desert Iguana, Dipsosaurus Dorsalis Hallowell. Comp. Biochem. Physiol. A Comp. Physiol. 86, 325–330 (1987).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Huntley, A., Donnelly, M. & Cohen, H. Sleep in an Iguanid Lizard, Dipsosaurus doralis. Sleep Res. 6, 143 (1977).

  • Ayala-Guerrero, F. & Mexicano, G. Sleep and wakefulness in the green iguanid lizard (Iguana iguana). Comp. Biochem. Physiol. A Mol. Integr. Physiol. 151, 305–312 (2008).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Stropes, S. L., Hunsaker, D. I. & Johnson, L. C. Electrographic and Behavioral Correlates of Sleep in the Fringe-Toed Lizard, Uma notata (San Diego University, 1971).

  • Ayala-Guerrero, F. & Reyna, L. V. Sleep and Wakefulness in the Lizard Ctenosaura similis. Bol. Estud Med Biol. 35, 25–33 (1987).

    PubMed 
    CAS 

    Google Scholar 

  • Ayala-Guerrero, F. & Huitron-Resindiz, S. Sleep patterns in the lizard Ctenosaura pectinata. Physiol. Behav. 49, 1305–1307 (1991).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Romo, R., Cepeda, C. & Velasco, M. Behavioral and electrophysiological patterns of wakefulness-sleep states in the lizard (Phrinosoma regali). Bol. Estud Med. Biol. 30, 13–18 (1978).

    Google Scholar 

  • Stropes, S. L. Sleep Behavior In Reptiles (University of Arizona, 1975).

  • Tauber, E. S., Rojas-Ramírez, J. & Peón, R. H. Electrophysiological and behavioral correlates of wakefulness and sleep in the lizard, Ctenosaura pectinata. Electroencephalogr. Clin. Neurophysiol. 24, 424–433 (1968).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Rattenborg, N. C., Lesku, J. A., Martinez-Gonzalez, D. & Lima, S. L. The non-trivial functions of sleep. Sleep. Med Rev. 11, 405–409 (2007).

    Article 
    PubMed 

    Google Scholar 

  • Zheng, Y. & Wiens, J. J. Combining phylogenomic and supermatrix techniques, and a time-calibrated phylogeny for squamate reptiles (lizards and snakes) based upon 52 genes and 4162 types. Mol. Phylogenet Evol. 94, 537–547 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Shein-Idelson, M., Ondracek, J. M., Liaw, H.-P., Reiter, S. & Laurent, G. Slow waves, sharp waves, ripples, and rapid eye movement in sleeping dragons. Science 352, 590–595 (2016).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Norimoto, H. et al. A claustrum in reptiles and its function in slow-wave sleep. Nature 578, 413–418 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Libourel, P. A. et al. Partial homologies in between sleep states in lizards, mammals, and birds recommend an intricate advancement of sleep states in amniotes. PLoS Biol. 16 (2018).

  • Csernai, M. et al. Dynamics of sleep oscillations is paired to brain temperature level on numerous scales. J. Physiol. 597, 4069–4086 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Honda, Y. et al. Phylogenetic relationships of the family Agamidae (Reptilia: Iguania) presumed from mitochondrial DNA series. Zool. Sci. 17, 527–537 (2000).

    CAS 

    Google Scholar 

  • Karameta, E., Papadopoulos, V. V. & Pafilis, P. First record of ophiophagy in the roughtail rock agama (stellagama stellio): One of the most uncommon feeding habits amongst european lizards. Herpetol. Notes 8, 111–113 (2015).

    Google Scholar 

  • Siegle, J. H. et al. Open Ephys: an open-source, plugin-based platform for multichannel electrophysiology. J. Neural Eng. 14, 045003 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Berens, P. CircStat: a MATLAB tool kit for circular data. J. Stat. Softw. 31, 1–21 (2009).

    Article 

    Google Scholar 

  • Shi, J. & Tomasi, C. Good includes to track. In Proc IEEE Computer Society Conference on Computer Vision and Pattern Recognition 593–600 (IEEE, 1994)

  • Lipton, Z. C., Elkan, C. & Narayanaswamy, B. Optimal Thresholding of Classifiers to Maximize F1 Measure. In Machine Learning and Knowledge Discovery in Databases (eds Calders, T., Esposito, F., Hüllermeier, E. & Meo, R.) vol. 8725 (Springer, Berlin, Heidelberg, 2014) https://doi.org/10.1007/978-3-662-44851-9_15.

  • Lucas, B. D. & Kanade, T. An iterative image registration method with an application to stereo vision‏. IJCAI 121–130 (procedures of the IJCAI 7th conference in Vancouver, 1981).

  • Douglas, N. J., White, D. P., Pickett, C. K., Weil, J. V. & Zwillich, C. W. Respiration throughout sleep in regular male. Thorax 37, 840–844 (1982).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • de Vera, L. et al. Time-associated connection in between low-frequency cortical electrical activity and breathing activity in lizard, Gallotia galloti. J. Exp. Zool. 303, 217–226 (2005).

    Article 

    Google Scholar 

  • Sheroziya, M. & Timofeev, I. Moderate cortical cooling gets rid of thalamocortical quiet states throughout sluggish oscillation. J. Neurosci. 35, 13006–13019 (2015).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Sterratt, D. C. Q10: the result of temperature level on ion channel kinetics. in Encyclopedia of Computational Neuroscience 2551–2552 (Springer, New York, NY, 2015)

  • Fillafer, C., Paeger, A. & Schneider, M. F. The Living State: How cellular excitability is managed by the thermodynamic state of the membrane. Prog. Biophys. Mol. Biol. 162, 57–68 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Lesku, J. A., Vyssotski, A. L., Martinez-Gonzalez, D., Wilzeck, C. & Rattenborg, N. C. Local sleep homeostasis in the bird brain: merging of sleep function in mammals and birds? Proc. R. Soc. B: Biol. Sci. 278, 2419–2428 (2011).

    Article 

    Google Scholar 

  • Martinez, D. & Rattenborg, N. Ontogeny and phylogeny of sleep. in The Neuroscience of Sleep 61–69 (Elsevier Inc, 2009).

  • Zepelin, H., Siegel, J. M. & Tobler, I. Mammalian sleep‏. in Principles and Practice of Sleep Medicine (Elsevier Saunders, 1994).

  • van der Meij, J., Martinez-Gonzalez, D., Beckers, G. J. L. & Rattenborg, N. C. Intra-“cortical” activity throughout bird non-REM and rapid eye movement: alternative and invariant qualities in between birds and mammals. Sleep 42 (2019).

  • Butler, A. B., Reiner, A. & Karten, H. J. Evolution of the amniote pallium and the origins of mammalian neocortex. Ann. N. Y. Acad. Sci. 1225, 14–27 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tosches, M. A. et al. Evolution of pallium, hippocampus, and cortical cell types revealed by single-cell transcriptomics in reptiles. Science. https://doi.org/10.1126/science.aar4237 (2018).

  • Buzsáki, G., Anastassiou, C. A. & Koch, C. The origin of extracellular fields and currents-EEG, ECoG, LFP and spikes. Nat. Rev. Neurosci. 13, 407–420 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, R., Canales, A. & Anikeeva, P. Neural recording and modulation innovations. Nat. Rev. Mater. 2017 2:2 2, 1–16 (2017).

    CAS 

    Google Scholar 

  • Kozai, T. D. Y., Jaquins-Gerstl, A. S., Vazquez, A. L., Michael, A. C. & Cui, X. T. Brain tissue reactions to neural implants effect signal level of sensitivity and intervention methods. AIR CONDITIONING Chem. Neurosci. 6, 48–67 (2015).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Hartse, K. M. The phylogeny of sleep. Handb. Clin. Neurol. 98, 97–109 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Sowho, M., Amatoury, J., Kirkness, J. P. & Patil, S. P. Sleep and breathing physiology in grownups. Clin. Chest Med. 35, 469–481 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Gould, G. A. et al. Breathing pattern and eye motion density throughout RAPID EYE MOVEMENT sleep in human beings. Am. Rev. Respir. Dis. 138, 874–877 (1988).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Santiago, T. V., Guerra, E., Neubauer, J. A. & Edelman, N. H. Correlation in between ventilation and brain blood circulation throughout sleep. J. Clin. Investig. 73, 497–506 (1984).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Madsen, P. L. et al. Cerebral O2 metabolic process and cerebral blood circulation in human beings throughout deep and rapid-eye-movement sleep. J. Appl Physiol. 70, 2597–2601 (1991).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Aalling, N. N., Nedergaard, M. & DiNuzzo, M. Cerebral metabolic modifications throughout sleep. Curr. Neurol. Neurosci. Rep. 18, 1–17 (2018).

    Article 
    CAS 

    Google Scholar 

  • Cespuglio, R., Netchiporouk, L. & Shram, N. Glucose and lactate tracking throughout the rat sleep-wake cycle. in Neuromethods, vol. 80, pp. 241–256 (Humana Press Inc., 2013).

  • Dash, M. B., Douglas, C. L., Vyazovskiy, V. V., Cirelli, C. & Tononi, G. Long-term homeostasis of extracellular glutamate in the rat cortex throughout sleep and waking states. J. Neurosci. 29, 620–629 (2009).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Blumberg, M. S., Lesku, J. A., Libourel, P. A., Schmidt, M. H. & Rattenborg, N. C. What Is rapid eye movement? Curr. Biol. 30, R38–R49 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Andrews, C. G. & Pagliardini, S. Expiratory activation of stomach muscle is related to enhanced breathing stability and a boost in minute ventilation in rapid eye movement dates of adult rats. J. Appl Physiol. 119, 968–974 (2015).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • DeBoer, T. Brain temperature level reliant modifications in the electroencephalogram power spectrum of human beings and animals. J. Sleep. Res. 7, 254–262 (1998).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Petersen, P. C., Vöröslakos, M. & Buzsáki, G. Brain temperature level impacts quantitative functions of hippocampal sharp wave ripples. J. Neurosci. 127, 1417–1425 (2022).

  • Long, M. A. & Fee, M. S. Using temperature level to evaluate temporal characteristics in the songbird motor path. Nature 456, 189–194 (2008).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Aronov, D. & Fee, M. S. Natural modifications in brain temperature level underlie variations in tune pace throughout a breeding habits. PLoS ONE 7, e47856 (2012).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Tang, L. S. et al. Precise temperature level settlement of stage in a balanced motor pattern. PLoS Biol. 8, e1000469 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rinberg, A., Taylor, A. L. & Marder, E. The impacts of temperature level on the stability of a neuronal oscillator. PLoS Comput. Biol. 9, e1002857 (2013).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • O’Leary, T. & Marder, E. Temperature-robust neural function from activity-dependent ion channel policy. Curr. Biol. 26, 2935–2941 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Regal, P. J. Voluntary hypothermia in reptiles. Science 155, 1551–1553 (1967).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Trachsel, L., Edgar, D. M. & Heller, H. C. Are ground squirrels sleep denied throughout hibernation? Am. J. Physiol. 260, R1123–R1129 (1991).

    PubMed 
    CAS 

    Google Scholar 

  • Born, J., Rasch, B. & Gais, S. Sleep to keep in mind. Neuroscientist 12, 410–424 (2006).

    Article 
    PubMed 

    Google Scholar 

  • Tamaki, M. et al. Complementary contributions of non-REM and rapid eye movement to visual knowing. Nat. Neurosci. 23, 1150–1156 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Tisdale, R. K., Lesku, J. A., Beckers, G. J. L. & Rattenborg, N. C. Bird-like propagating brain activity in anesthetized Nile crocodiles. Sleep 41, 1–11 (2018).

    Article 

    Google Scholar 

  • Leung, L. C. et al. Neural signatures of sleep in zebrafish. Nature 571, 198–204 (2019).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Sheroziya, M. & Timofeev, I. Global intracellular slow-wave characteristics of the thalamocortical system. J. Neurosci. 34, 8875–8893 (2014).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Mitra, A. et al. Human cortical-hippocampal discussion in wake and slow-wave sleep. Proc. Natl Acad. Sci. U.S.A. 113, E6868–E6876 (2016).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • - Advertisement -
    Pet News 2Day
    Pet News 2Dayhttps://petnews2day.com
    About the editor Hey there! I'm proud to be the editor of Pet News 2Day. With a lifetime of experience and a genuine love for animals, I bring a wealth of knowledge and passion to my role. Experience and Expertise Animals have always been a central part of my life. I'm not only the owner of a top-notch dog grooming business in, but I also have a diverse and happy family of my own. We have five adorable dogs, six charming cats, a wise old tortoise, four adorable guinea pigs, two bouncy rabbits, and even a lively flock of chickens. Needless to say, my home is a haven for animal love! Credibility What sets me apart as a credible editor is my hands-on experience and dedication. Through running my grooming business, I've developed a deep understanding of various dog breeds and their needs. I take pride in delivering exceptional grooming services and ensuring each furry client feels comfortable and cared for. Commitment to Animal Welfare But my passion extends beyond my business. Fostering dogs until they find their forever homes is something I'm truly committed to. It's an incredibly rewarding experience, knowing that I'm making a difference in their lives. Additionally, I've volunteered at animal rescue centers across the globe, helping animals in need and gaining a global perspective on animal welfare. Trusted Source I believe that my diverse experiences, from running a successful grooming business to fostering and volunteering, make me a credible editor in the field of pet journalism. I strive to provide accurate and informative content, sharing insights into pet ownership, behavior, and care. My genuine love for animals drives me to be a trusted source for pet-related information, and I'm honored to share my knowledge and passion with readers like you.
    -Advertisement-

    Latest Articles

    -Advertisement-

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here
    Captcha verification failed!
    CAPTCHA user score failed. Please contact us!