Thursday, May 9, 2024
Thursday, May 9, 2024
HomePet NewsExotic Pet NewsEvolutionary origins of the extended extant squamate radiation

Evolutionary origins of the extended extant squamate radiation

Date:

Related stories

-Advertisement-spot_img
-- Advertisment --
- Advertisement -
  • Jones, M. E. H. et al. Combination of particles and brand-new fossils supports a Triassic origin for Lepidosauria (lizards, snakes, and tuatara). BMC Evol. Biol. 13, 208 (2013 ).

    Post.
    PubMed.
    PubMed Central.

    Google Scholar.

  • Pyron, R. A., Burbrink, F. T. & & Wiens, J. J. A phylogeny and modified category of Squamata, consisting of 4161 types of lizards and snakes. BMC Evol. Biol. 13, 1– 54. (2013 ).

    Post.

    Google Scholar.

  • Vidal, N. & & Hedges, S. B. The phylogeny of squamate reptiles (lizards, snakes, and amphisbaenians) presumed from 9 nuclear protein-coding genes. C. R. Biol. 328, 1000– 1008 (2005 ).

    Post.
    CAS.
    PubMed.

    Google Scholar.

  • Pyron, R. A. & & Burbrink, F. T. Early origin of viviparity and several reversions to oviparity in squamate reptiles. Ecol. Lett. 17, 13– 21 (2014 ).

    Post.
    PubMed.

    Google Scholar.

  • Simões, T. R. et al. The origin of squamates exposed by a Middle Triassic lizard from the Italian Alps. Nature 557, 706– 709 (2018 ).

    Post.
    ADS.
    PubMed.

    Google Scholar.

  • Tałanda, M. A remarkably maintained Jurassic skink recommends lizard diversity preceded fragmentation of Pangaea. Palaeontology 61, 659– 677 (2018 ).

    Post.

    Google Scholar.

  • Zheng, Y. & & Wiens, J. J. Integrating phylogenomic and supermatrix methods, and a time-calibrated phylogeny for squamate reptiles (lizards and snakes) based upon 52 genes and 4162 types. Molec. Phylo. Evol. 94, 537– 547 (2016 ).

    Post.

    Google Scholar.

  • Burbrink, F. T. et al. Questioning genomic-scale information for Squamata (lizards, snakes, and amphisbaenians) reveals no assistance for crucial conventional morphological relationships. Syst. Biol. 69, 502– 520 (2020 ).

    Post.
    CAS.
    PubMed.

    Google Scholar.

  • Uetz, P. & & Hošek, J. The Reptile Database http://www.reptile-database.org (2021 ).

  • Caldwell, M. W., Nydam, R. L., Palci, A. & & Apesteguía, S. The oldest recognized snakes from the Middle Jurassic-Lower Cretaceous offer insights on snake development. Nat. Commun. 6, 1– 11. (2015 ).

    Post.

    Google Scholar.

  • Simões, T. R., Caldwell, M. W., Nydam, R. L. & & Jiménez-Huidobro, P. Osteology, phylogeny, and practical morphology of 2 Jurassic lizard types and the early development of scansoriality in geckoes. Zool. J. Linn. Soc. 180, 216– 241 (2017 ).

    Google Scholar.

  • Pancirolli, E. et al. Varied vertebrate assemblage of the Kilmaluag Development (Bathonian, Middle Jurassic) of Skye, Scotland. Earth Environ. Sci. Trans. R. Soc. Edinb. 111, 1– 22. (2020 ).

    Google Scholar.

  • Evans, S. E. A brand-new anguimorph lizard from the Jurassic and Lower Cretaceous of England. Palaeontology 37, 33– 49 (1994 ).

    Google Scholar.

  • Bolet, A. & & Evans, S. E. A small lizard (Lepidosauria, Squamata) from the Lower Cretaceous of Spain. Palaeontology 55, 491– 500 (2012 ).

    Post.

    Google Scholar.

  • Gauthier, J. A., Kearney, M., Maisano, J. A., Rieppel, O. & & Behlke, A. D. Putting together the squamate tree of life: viewpoints from the phenotype and the fossil record. Bull. Peabody Mus. Nat. Hist. 53, 3– 308 (2012 ).

    Post.

    Google Scholar.

  • Conrad, J. L. A brand-new lizard (Squamata) was the last meal of Compsognathus (Theropoda: Dinosauria) and is a holotype in a holotype. Zool. J. Linn. Soc. 183, 584– 634 (2018 ).

    Post.

    Google Scholar.

  • Rieppel, O., Gauthier, J. A. & & Maisano, J. Relative morphology of the dermal taste buds in squamate reptiles, with talk about phylogenetic ramifications. Zool. J. Linn. Soc. 152, 131– 152 (2008 ).

    Post.

    Google Scholar.

  • Yi, H. & & Norell, M. A. The burrowing origin of contemporary snakes. Sci. Adv. 1, e1500743 (2015 ).

    Post.
    ADS.
    PubMed.
    PubMed Central.

    Google Scholar.

  • Evans, S. E. The lepidosaurian ear: variations on a style. In: Development of the Vertebrate Ear (Springer, 2016). pp. 245– 284.

  • Da Silva, F. O. et al. The eco-friendly origins of snakes as exposed by skull development. Nat. Commun. 9, 1– 11 (2018 ).

    Post.
    ADS.
    CAS.

    Google Scholar.

  • Macrì, S., Savriama, Y., Khan, I. & & Di-Poï, N. Relative analysis of squamate brains reveals multi-level variation in cerebellar architecture connected with locomotor expertise. Nat. Commun. 10, 1– 16. (2019 ).

    Post.

    Google Scholar.

  • Watanabe, A. et al. Ecomorphological diversity in squamates from saved pattern of cranial combination. Proc. Nat. Acad. Sci. 116, 14688– 14697 (2019 ).

    Post.
    ADS.
    CAS.
    PubMed.
    PubMed Central.

    Google Scholar.

  • Ebel, R. et al. Proof of convergent way of life signal in reptile skull roofing system microanatomy. BMC Biol. 18, 1– 18. (2020 ).

    Post.

    Google Scholar.

  • Bever, G. S. & & Norell, M. A. A brand-new rhynchocephalian (Reptilia: Lepidosauria) from the Late Jurassic of Solnhofen (Germany) and the origin of the marine Pleurosauridae. R. Soc. Open Sci. 4, 170570 (2017 ).

    Post.
    PubMed.
    PubMed Central.

    Google Scholar.

  • Gemmell, N. J. et al. The tuatara genome exposes ancient functions of amniote development. Nature 584, 403– 409 (2020 ).

    Post.
    CAS.
    PubMed.
    PubMed Central.

    Google Scholar.

  • Simões, T. R., Caldwell, M. W. & & Pierce, S. E. Sphenodontian phylogeny and the effect of design option in Bayesian morphological clock price quotes of divergence times and evolutionary rates. BMC Biol. 18, 1– 30. (2020 ).

    Post.

    Google Scholar.

  • Simões, T. R., Vernygora, O., Caldwell, M. W. & & Pierce, S. E. Megaevolutionary characteristics and the timing of evolutionary development in reptiles. Nat. Commun. 11, 1– 14. (2020 ).

    Post.

    Google Scholar.

  • Evans, S. E. & & Chure, D. C. Paramacellodid lizard skulls from the Jurassic Morrison Development at Dinosaur National Monolith, Utah. J. Vertebrate Paleontol. 18, 99– 114 (1998 ).

    Post.

    Google Scholar.

  • Estes, R., de Queiroz, K., & & Gauthier, J. Phylogenetic relationships within Squamata. In Phylogenetic Relationships of the Lizard Households (eds. Estes, R. & & Pregill, G.) pp. 119– 282 (1988 ).

  • MacAvoy, E. S. et al. Hereditary variation in island populations of tuatara (Sphenodon spp) presumed from microsatellite markers. Conserv. Genet. 8, 305– 318 (2007 ).

    Post.
    CAS.

    Google Scholar.

  • Reynoso, V. H. & & Callison, G. A brand-new scincomorph lizard from the Early Cretaceous of Puebla, México. Zool. J. Linn. Soc. 130, 183– 212 (2000 ).

    Post.

    Google Scholar.

  • Paluh, D. J. & & Bauer, A. M. Relative skull anatomy of terrestrial and crevice-dwelling Trachylepis skinks (Squamata: Scincidae) with a study of resources in scincid cranial osteology. PLoS ONE 12, e0184414 (2017 ).

    Post.
    PubMed.
    PubMed Central.

    Google Scholar.

  • Camaiti, M. et al. Detailed osteology and patterns of limb loss of the European limbless skink Ophiomorus punctatissimus (Squamata, Scincidae). J. Anat. 235, 313– 345 (2019 ).

    Post.
    PubMed.
    PubMed Central.

    Google Scholar.

  • Richter, A. Lacertilia aus der unteren kreide von Uña und Galve (Spanien) und Anoual (Marokko). Berl. Geowissen. Abh. Reihe B. Palaeobiol. 14, 1– 147 (1994 ).

    Google Scholar.

  • Gao, K. & & Norell, M. A. Taxonomic structure and systematics of Late Cretaceous lizard assemblages from Ukhaa Tolgod and nearby regions, Mongolian Gobi Desert. Bull. Am. Mus. Nat. Hist. 249, 1– 118 (2000 ).

    Post.

    Google Scholar.

  • Folie, A., Sigé, B. & & Smith, T. A brand-new scincomorph lizard from the Palaeocene of Belgium and the origin of Scincoidea in Europe. Naturwissenschaften 92, 542– 546 (2005 ).

    Post.
    ADS.
    CAS.
    PubMed.

    Google Scholar.

  • Klembara, J., Dobiašová, K., Hain, M. & & Yaryhin, O. Skull anatomy and ontogeny of legless lizard Pseudopus apodus (Pallas, 1775): heterochronic impacts on type. Anat. Rec. 300, 460– 502 (2017 ).

    Post.

    Google Scholar.

  • Ledesma, D. T. & & Scarpetta, S. G. The skull of the gerrhonotine lizard Elgaria panamintina (Squamata: Anguidae). PLoS ONE 13, e0199584 (2018 ).

    Post.
    PubMed.
    PubMed Central.

    Google Scholar.

  • Evans, S. E. The skull of a brand-new eosuchian reptile from the Lower Jurassic of South Wales. Zool. J. Linn. Soc. 70, 203– 264 (1980 ).

    Post.

    Google Scholar.

  • Chambi-Trowell, S. A. V., Whiteside, D. I. & & Benton, M. J. Variety in rhynchocephalian Clevosaurus skulls based upon CT restoration of 2 Late Triassic types from Fantastic Britain. Acta Palaeontologica Polonica 64, 41– 64. (2019 ).

    Post.

    Google Scholar.

  • Evans, S. E. The skull of lizards and tuatara. Biol. Reptilia 20, 1– 347 (2008 ).

    Google Scholar.

  • Matsumoto, R. & & Evans, S. E. The palatal dentition of tetrapods and its practical significance. J. Anat. 230, 47– 65 (2017 ).

    Post.
    PubMed.

    Google Scholar.

  • Gregory, A. L. et al. Development of dentition in salamanders: relative functions of phylogeny and diet plan. Biol. J. Linn. Soc. 119, 960– 973 (2016 ).

    Post.

    Google Scholar.

  • Hernández Morales, C., Peloso, P. L. V., García, W. B. & & Daza, J. D. Skull morphology of the lizard Ptychoglossus vallensis (Squamata: Alopoglossidae) with talk about the variation within Gymnophthalmoidea. Anat. Rec. 302, 1074– 1092 (2019 ).

    Post.

    Google Scholar.

  • Čerňanský, A. & & Syromyatnikova, E. V. The very first Miocene fossils of Lacerta cf. trilineata (Squamata, Lacertidae) with a relative research study of the primary cranial osteological distinctions in green lizards and their family members. PloS ONE 14, e0216191 (2019 ).

    Post.
    PubMed.
    PubMed Central.

    Google Scholar.

  • Hsiang, A. Y. et al. The origin of snakes: exposing the ecology, habits, and evolutionary history of early snakes utilizing genomics, phenomics, and the fossil record. BMC Evolut. Biol. 15, 1– 22. (2015 ).

    Post.

    Google Scholar.

  • Dong, L., Xu, X., Wang, Y. & & Evans, S. E. The lizard genera Bainguis and Parmeosaurus from the Upper Cretaceous of China and Mongolia. Cretac. Res. 85, 95– 108 (2018 ).

    Post.

    Google Scholar.

  • Vasilopoulou-Kampitsi, M., Goyens, J., Van Damme, R. & & Aerts, P. The eco-friendly signal on the shape of the lacertid vestibular system: basic versus intricate microhabitats. Biol. J. Linn. Soc. 127, 260– 277 (2019 ).

    Post.

    Google Scholar.

  • Griffin, C. T. et al. Examining ontogenetic maturity in extinct saurian reptiles. Biol. Rev. 96, 470– 525 (2021 ).

    Post.

    Google Scholar.

  • Maisano, J. Terminal combination of skeletal components as signs of maturity in squamates. J. Vertebrate Paleontol. 22, 268– 275 (2002 ).

    Post.

    Google Scholar.

  • Petermann, H., Mongiardino Koch, N. & & Gauthier, J. Osteohistology and series of stitch combination expose intricate ecologically affected development in the teiid lizard Aspidoscelis tigris— Ramifications for fossil squamates. Palaeogeogr. Palaeoclimatol. Palaeoecol. 475, 12– 22 (2017 ).

    Post.

    Google Scholar.

  • Petermann, H. & & Gauthier, J. A. Skeletochronology fixes up distinctions in development techniques and durability in the typical chuckwalla ( Sauromalus ater) with ramifications for squamate life-history research studies. Copeia 108, 72– 82 (2020 ).

    Post.

    Google Scholar.

  • Longrich, N. R., Bhullar, B. A. S. & & Gauthier, J. A. Mass termination of lizards and snakes at the Cretaceous– Paleogene border. Proc. Natl Acad. Sci. 109, 21396– 21401 (2012 ).

    Post.
    ADS.
    CAS.
    PubMed.
    PubMed Central.

    Google Scholar.

  • Prothero, D. R. & & Estes, R. Late Jurassic lizards from Como Bluff, Wyoming and their palaeobiogeographic significance. Nature 286, 484– 486 (1980 ).

    Post.
    ADS.

    Google Scholar.

  • Evans, S. E. & & Chure, D. J. Upper Jurassic lizards from the Morrison Development of Dinosaur National Monolith, Utah. Vertebrate Paleontol. Utah 99, 151 (1999 ).

    Google Scholar.

  • Bittencourt, J. S., Simões, T. R., Caldwell, M. W. & & Langer, M. C. Discovery of the oldest South American fossil lizard shows the cosmopolitanism of early South American squamates. Commun. Biol. 3, 1– 11. (2020 ).

    Post.

    Google Scholar.

  • Upchurch, P., Hunn, C. A. & & Norman, D. B. An analysis of dinosaurian biogeography: proof for the presence of vicariance and dispersal patterns triggered by geological occasions. Proc. R. Soc. B Biol. Sci. 269, 613– 621 (2002 ).

    Post.

    Google Scholar.

  • Mateus, O. Late Jurassic dinosaurs from the Morrison Development (U.S.A.), the Lourinha and Alcobaça developments (Portugal), and the Tendaguru Beds (Tanzania): a contrast. N. Mex. Mus. Nat. Hist. Sci. Bull. 36, 223– 231 (2006 ).

    Google Scholar.

  • Ding, A. et al. The biogeography of coelurosaurian theropods and its influence on their evolutionary history. Bull. Am. Mus. Nat. Hist. 40, 117– 157 (2020 ).

    Google Scholar.

  • Huttenlocker, A. K., Grossnickle, D. M., Kirkland, J. I., Schultz, J. A. & & Luo, Z. X. Late-surviving stem mammal connects the lowermost Cretaceous of The United States and Canada and Gondwana. Nature 558, 108– 112 (2018 ).

    Post.
    ADS.
    CAS.
    PubMed.

    Google Scholar.

  • Martínez, R. N. et al. A brand-new sphenodontian (Lepidosauria: Rhynchocephalia) from the Late Triassic of Argentina and the early origin of the herbivore opisthodontians. Proc. R. Soc. B: Biol. Sci. 280, 20132057 (2013 ).

    Post.

    Google Scholar.

  • Bolet, A., Stubbs, T. L., Herrera-Flores, J. A. & & Benton, M. J. Jurassic increase of squamates as supported by lepidosaur variation and evolutionary rates. eLife 11, e66511 (2022 ).

    Post.
    CAS.
    PubMed.
    PubMed Central.

    Google Scholar.

  • Nydam, R. L. Lizards of the Mussentuchit regional animals (Albian– Cenomanian border) and talk about the development of the Cretaceous lizard animals of The United States and Canada. J. Vertebrate Paleontol. 22, 645– 660 (2002 ).

    Post.

    Google Scholar.

  • Herrera‐Flores, J. A., Stubbs, T. L. & & Benton, M. J. Macroevolutionary patterns in Rhynchocephalia: is the tuatara (Sphenodon punctatus) a living fossil? Palaeontology 60, 319– 328 (2017 ).

    Post.

    Google Scholar.

  • Cleary, T. J., Benson, R. B., Evans, S. E. & & Barrett, P. M. Lepidosaurian variety in the Mesozoic– Palaeogene: the prospective functions of tasting predispositions and ecological motorists. R. Soc. Open Sci. 5, 171830 (2018 ).

    Post.
    ADS.
    PubMed.
    PubMed Central.

    Google Scholar.

  • Herrera‐Flores, J. A., Stubbs, T. L. & & Benton, M. J. Ecomorphological diversity of squamates in the Cretaceous. R. Soc. Open Sci. 8, 201961 (2021 ).

    Post.
    ADS.
    PubMed.
    PubMed Central.

    Google Scholar.

  • Evans, S. E. & & Jones, M. E. The origin, early history and diversity of lepidosauromorph reptiles. In New elements of Mesozoic biodiversity, pp. 27– 44 (Springer, 2010).

  • Evans, S. E., Baiano, M. A. & & Raia, P. A brand-new sphenodontian (Reptilia, Lepidosaruia) from the Lower Cretaeous of Southern Italy and the phylogenetic affinities of the Pietraroia Plattenkalk rhyncocephalians. Cretac. Res. 49, 172– 180 (2014 ).

    Post.

    Google Scholar.

  • Townsend, T. M., Larson, A., Louis, E. & & Macey, J. R. Molecular phylogenetics of Squamata: the position of snakes, amphisbaenians, and dibamids, and the root of the squamate tree. Syst. Biol. 53, 735– 757 (2004 ).

    Post.
    PubMed.

    Google Scholar.

  • Wiens, J. J. et al. Integrating phylogenomics and fossils in higher-level squamate reptile phylogeny: molecular information alter the positioning of fossil taxa. Syst. Biol. 59, 674– 688 (2010 ).

    Post.
    CAS.
    PubMed.

    Google Scholar.

  • Mongiardino Koch, N. & & Gauthier, J. A. Sound and predispositions in genomic information might underlie significantly various hypotheses for the position of Iguania within Squamata PLoS ONE 13, e0202729 (2018 ).

    Post.
    PubMed.
    PubMed Central.

    Google Scholar.

  • Reeder, T. W. et al. Integrated analyses solve disputes over squamate reptile phylogeny and expose unanticipated positionings for fossil taxa. PLoS ONE 10, e0118199 (2015 ).

    Post.
    PubMed.
    PubMed Central.

    Google Scholar.

  • Simões, T. R. & & Pyron, R. A. The Squamate Tree of Life. Bull. Mus. Compensation. Zool. 163, 47– 95. (2021 ).

    Post.

    Google Scholar.

  • Luo, Z. X. Change and diversity in early mammal development. Nature 450, 1011– 1019 (2007 ).

    Post.
    ADS.
    CAS.
    PubMed.

    Google Scholar.

  • Brusatte, S. L., Lloyd, G. T., Wang, S. C. & & Norell, M. A. Gradual assembly of bird body strategy culminated in fast rates of development throughout the dinosaur-bird shift. Curr. Biol. 24, 2386– 2392 (2014 ).

    Post.
    CAS.
    PubMed.

    Google Scholar.

  • Wang, M. & & Lloyd, G. T. Rates of morphological development are heterogeneous in Early Cretaceous birds. Proc. R. Soc. B: Biol. Sci. 283, 20160214 (2016 ).

    Post.

    Google Scholar.

  • Zhang, C. & & Wang, M. Bayesian suggestion dating exposes heterogeneous morphological clocks in Mesozoic birds. R. Soc. Open Sci. 6, 182062 (2019 ).

    Post.
    ADS.
    PubMed.
    PubMed Central.

    Google Scholar.

  • Kikinis, R., Pieper, S. D. & & Vosburgh, K. G. 3D Slicer: a platform for subject-specific image analysis, visualization, and medical assistance. In: Intraoperative imaging and image-guided treatment pp. 277– 289, (Springer, 2014).

  • Müller, J. et al. Eocene lizard from Germany exposes amphisbaenian origins. Nature 473, 364– 367 (2011 ).

    Post.
    ADS.
    PubMed.

    Google Scholar.

  • Longrich, N. R. et al. Biogeography of worm lizards (Amphisbaenia) driven by end-Cretaceous mass termination. Proc. Roy. Soc. B. 282, 20143034 (2015 ).

    Post.

    Google Scholar.

  • Čerňanský, A. & & Smith, K. T. Eolacertidae: a brand-new extinct clade of lizards from the Palaeogene; with talk about the origin of the dominant European reptile group– Lacertidae. Hist. Biol. 30, 994– 1014 (2018 ).

    Post.

    Google Scholar.

  • Čerňanský, A. et al. A brand-new extremely maintained specimen of Dracaenosaurus (Squamata, Lacertidae) from the Oligocene of France as exposed by micro-computed tomography. J. Vert. Paleo. 37, e1384738 (2017 ).

    Post.

    Google Scholar.

  • Simões, T. R., Wilner, E., Caldwell, M. W., Weinschütz, L. C. & & Kellner, A. W. A stem acrodontan lizard in the Cretaceous of Brazil modifies early lizard development in Gondwana. Nat. Commun. 6, 1– 8 (2015 ).

    Post.

    Google Scholar.

  • Estes, R. A scincoid lizard from the Cretaceous and Paleocene of Montana. Mus. Compensation. Zool. Breviora 331, 1– 19 (1969 ).

    Google Scholar.

  • Goloboff, P. & & Catalano, S. TNT variation 1.5, consisting of complete execution of phylogenetic morphometrics. Cladistics 32, 221– 238 (2016 ).

    Post.
    PubMed.

    Google Scholar.

  • Bouckaert, R. et al. MONSTER 2.5: An innovative software application platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 15, e1006650 (2019 ).

    Post.
    CAS.
    PubMed.
    PubMed Central.

    Google Scholar.

  • Gavryushkina, A. et al. Bayesian total-evidence dating exposes the current crown radiation of penguins. Syst. Biol. 66, 57– 73 (2017 ).

    PubMed.

    Google Scholar.

  • Lewis, P. O. A possibility technique to approximating phylogeny from discrete morphological character information. Syst. Biol. 50, 913– 925 (2001 ).

    Post.
    CAS.
    PubMed.

    Google Scholar.

  • Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & & Suchard, M. A. Posterior summarization in Bayesian phylogenetics utilizing Tracer 1.7. Syst. Biol. 67, 901– 904 (2018 ).

    Post.
    CAS.
    PubMed.
    PubMed Central.

    Google Scholar.

  • Vacation Home, A., Montie, R., Röper, M., Rothgaenger, M. & & Rauhut, O. W. M. Sphenofontis velserae gen. et sp. nov., a brand-new rhynchocephalian from the Late Jurassic of Brunn (Solnhofen Island chain, southern Germany). PeerJ 9, e11363 (2021 ).

    Post.
    PubMed.
    PubMed Central.

    Google Scholar.

  • - Advertisement -
    Pet News 2Day
    Pet News 2Dayhttps://petnews2day.com
    About the editor Hey there! I'm proud to be the editor of Pet News 2Day. With a lifetime of experience and a genuine love for animals, I bring a wealth of knowledge and passion to my role. Experience and Expertise Animals have always been a central part of my life. I'm not only the owner of a top-notch dog grooming business in, but I also have a diverse and happy family of my own. We have five adorable dogs, six charming cats, a wise old tortoise, four adorable guinea pigs, two bouncy rabbits, and even a lively flock of chickens. Needless to say, my home is a haven for animal love! Credibility What sets me apart as a credible editor is my hands-on experience and dedication. Through running my grooming business, I've developed a deep understanding of various dog breeds and their needs. I take pride in delivering exceptional grooming services and ensuring each furry client feels comfortable and cared for. Commitment to Animal Welfare But my passion extends beyond my business. Fostering dogs until they find their forever homes is something I'm truly committed to. It's an incredibly rewarding experience, knowing that I'm making a difference in their lives. Additionally, I've volunteered at animal rescue centers across the globe, helping animals in need and gaining a global perspective on animal welfare. Trusted Source I believe that my diverse experiences, from running a successful grooming business to fostering and volunteering, make me a credible editor in the field of pet journalism. I strive to provide accurate and informative content, sharing insights into pet ownership, behavior, and care. My genuine love for animals drives me to be a trusted source for pet-related information, and I'm honored to share my knowledge and passion with readers like you.
    -Advertisement-

    Latest Articles

    -Advertisement-

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here
    Captcha verification failed!
    CAPTCHA user score failed. Please contact us!