Monday, May 13, 2024
Monday, May 13, 2024
HomePet Industry NewsPet Travel NewsTranslational molecular imaging and drug growth in Parkinson’s illness | Molecular Neurodegeneration

Translational molecular imaging and drug growth in Parkinson’s illness | Molecular Neurodegeneration

Date:

Related stories

-Advertisement-spot_img
-- Advertisment --
- Advertisement -
  • Bloem BR, Okun MS, Klein C. Parkinson’s illness. The Lancet. 2021;397:2284–303.

    CAS 

    Google Scholar
     

  • Ovallath S, Deepa P. The historical past of parkinsonism: descriptions in historic Indian medical literature. Mov Disord. 2013;28:566–8.


    Google Scholar
     

  • Parkinson J. An Essay on the Shaking Palsy. 1817. J Neuropsychiatry Clin Neurosci. 2002;14:223–36.


    Google Scholar
     

  • Goetz CG. The historical past of Parkinson’s illness: early medical descriptions and neurological therapies. Cold Spring Harb Perspect Med. 2011;1:a008862–a008862.


    Google Scholar
     

  • Nussbaum RL, Ellis CE. Alzheimer’s illness and Parkinson’s illness. N Engl J Med. 2003;348:1356–64.

    CAS 

    Google Scholar
     

  • Collaborators GN. Global, regional, and nationwide burden of neurological issues, 1990–2016: a scientific evaluation for the Global Burden of Disease Study 2016. Lancet Neurol. 2019;18:459–80.


    Google Scholar
     

  • Papapetropoulos S, Adi N, Ellul J, Argyriou AA, Chroni E. A potential examine of familial versus sporadic Parkinson’s illness. Neurodegener Dis. 2007;4:424–7.


    Google Scholar
     

  • Braak H, Ghebremedhin E, Rüb U, Bratzke H, Del Tredici Ok. Stages within the growth of Parkinson’s disease-related pathology. Cell Tissue Res. 2004;318:121–34.


    Google Scholar
     

  • Masato A, Plotegher N, Boassa D, Bubacco L. Impaired dopamine metabolism in Parkinson’s illness pathogenesis. Mol Neurodegener. 2019;14:35.


    Google Scholar
     

  • Sveinbjornsdottir S. The medical signs of Parkinson’s illness. J Neurochem. 2016;139:318–24.

    CAS 

    Google Scholar
     

  • Cheng HC, Ulane CM, Burke RE. Clinical development in Parkinson illness and the neurobiology of axons. Ann Neurol. 2010;67:715–25.


    Google Scholar
     

  • Braak H, Bohl JR, Müller CM, Rüb U, de Vos RAI, Del Tredici Ok. Stanley Fahn Lecture 2005: The staging process for the inclusion physique pathology related to sporadic Parkinson’s illness reconsidered. Mov Disord. 2006;21:2042–51.


    Google Scholar
     

  • Poewe W, Seppi Ok, Tanner CM, Halliday GM, Brundin P, Volkmann J, Schrag A-E, Lang AE. Parkinson illness. Nat Rev Dis Primers. 2017;3:17013.


    Google Scholar
     

  • Jankovic J. Parkinson’s illness: medical options and prognosis. J Neurol Neurosurg Psychiatry. 2008;79:368–76.

    CAS 

    Google Scholar
     

  • Solari N, Bonito-Oliva A, Fisone G, Brambilla R. Understanding cognitive deficits in Parkinson’s illness: classes from preclinical animal fashions. Learn Mem. 2013;20:592–600.


    Google Scholar
     

  • Schneider F, Althaus A, Backes V, Dodel R. Psychiatric signs in Parkinson’s illness. Eur Arch Psychiatry Clin Neurosci. 2008;258:55–9.


    Google Scholar
     

  • Pagano G, Niccolini F, Politis M. Imaging in Parkinson’s illness Clin Med (Lond). 2016;16:371–5.


    Google Scholar
     

  • Schapira AHV, Gu M, Taanman JW, Tabrizi SJ, Seaton T, Cleeter M, Cooper JM. Mitochondria within the etiology and pathogenesis of parkinson’s illness. Ann Neurol. 1998;44:S89–98.

    CAS 

    Google Scholar
     

  • Park J-S, Davis RL, Sue CM. Mitochondrial Dysfunction in Parkinson’s Disease: New Mechanistic Insights and Therapeutic Perspectives. Curr Neurol Neurosci Rep. 2018;18(5):21.


    Google Scholar
     

  • Jenner P, Olanow CW. Oxidative stress and the pathogenesis of Parkinson’s illness. Neurology. 1996;47:161S.


    Google Scholar
     

  • Blesa J, Trigo-Damas I, Quiroga-Varela A, Jackson-Lewis VR. Oxidative stress and Parkinson’s illness. Front Neuroanatomy. 2015;9:91.


    Google Scholar
     

  • Hirsch EC, Hunot S. Neuroinflammation in Parkinson’s illness: a goal for neuroprotection? The Lancet Neurology. 2009;8:382–97.

    CAS 

    Google Scholar
     

  • Wang Q, Liu Y, Zhou J. Neuroinflammation in Parkinson’s illness and its potential as therapeutic goal. Transl Neurodegener. 2015;4:19.


    Google Scholar
     

  • Ambrosi G, Cerri S, Blandini F. An additional replace on the position of excitotoxicity within the pathogenesis of Parkinson’s illness. J Neural Transm (Vienna, Austria : 1996). 2014;121:849–59.

    CAS 

    Google Scholar
     

  • van der Brug MP, Singleton A, Gasser T, Lewis PA. Parkinson’s illness: From human genetics to medical trials. Sci Transl Med. 2015;7:205ps220.


    Google Scholar
     

  • Funayama M, Nishioka Ok, Li Y, Hattori N. Molecular genetics of Parkinson’s illness: Contributions and international traits. J Hum Genet. 2022. https://doi.org/10.1038/s10038-022-01058-5.

  • McNaught KS, Olanow CW. Protein aggregation within the pathogenesis of familial and sporadic Parkinson’s illness. Neurobiol Aging. 2006;27:530–45.

    CAS 

    Google Scholar
     

  • Akhtar RS, Xie SX, Brennan L, Pontecorvo MJ, Hurtig HI, Trojanowski JQ, Weintraub D, Siderowf AD. Amyloid-Beta Positron Emission Tomography Imaging of Alzheimer’s Pathology in Parkinson’s Disease Dementia. Mov Disord Clin Pract. 2016;3:367–75.


    Google Scholar
     

  • Murphy MP, Bayir H, Belousov V, Chang CJ, Davies KJA, Davies MJ, Dick TP, Finkel T, Forman HJ, Janssen-Heininger Y, et al. Guidelines for measuring reactive oxygen species and oxidative harm in cells and in vivo. Nat Metab. 2022;4:651–62.


    Google Scholar
     

  • Chaudhuri KR, Schapira AH. Non-motor signs of Parkinson’s illness: dopaminergic pathophysiology and therapy. Lancet Neurol. 2009;8:464–74.

    CAS 

    Google Scholar
     

  • Braak H, Braak E. Pathoanatomy of Parkinson’s illness. J Neurol. 2000;247:II3–10.


    Google Scholar
     

  • Rascol O, Payoux P, Ory F, Ferreira JJ, Brefel-Courbon C, Montastruc JL. Limitations of present Parkinson’s illness remedy. Ann Neurol. 2003;53(Suppl 3):S3-12; dialogue S12-5.

    CAS 

    Google Scholar
     

  • Armstrong MJ, Okun MS. Diagnosis and Treatment of Parkinson Disease: A Review. JAMA. 2020;323:548–60.


    Google Scholar
     

  • Verger A, Grimaldi S, Ribeiro MJ, Frismand S, Guedj E. Single Photon Emission Computed Tomography/Positron Emission Tomography Molecular Imaging for Parkinsonism: A Fast-Developing Field. Ann Neurol. 2021;90:711–9.


    Google Scholar
     

  • Nerella SG, Singh P, Sanam T, Digwal CS. PET Molecular Imaging in Drug Development: The Imaging and Chemistry Perspective. Front Med (Lausanne). 2022;9:812270.


    Google Scholar
     

  • Lu FM, Yuan Z. PET/SPECT molecular imaging in medical neuroscience: latest advances within the investigation of CNS illnesses. Quant Imaging Med Surg. 2015;5:433–47.


    Google Scholar
     

  • Ametamey SM, Honer M, Schubiger PA. Molecular imaging with PET. Chem Rev. 2008;108:1501–16.

    CAS 

    Google Scholar
     

  • Zhu L, Ploessl Ok, Kung HF. PET/SPECT imaging brokers for neurodegenerative illnesses. Chem Soc Rev. 2014;43:6683–91.

    CAS 

    Google Scholar
     

  • Pavese N, Brooks DJ. Imaging neurodegeneration in Parkinson’s illness. Biochem Biophys Acta. 2009;1792:722–9.

    CAS 

    Google Scholar
     

  • Matthews DC, Lerman H, Lukic A, Andrews RD, Mirelman A, Wernick MN, Giladi N, Strother SC, Evans KC, Cedarbaum JM, Even-Sapir E. FDG PET Parkinson’s disease-related sample as a biomarker for medical trials in early stage illness. Neuroimage Clin. 2018;20:572–9.


    Google Scholar
     

  • Meyer PT, Frings L, Rücker G, Hellwig S. (18)F-FDG PET in Parkinsonism: Differential Diagnosis and Evaluation of Cognitive Impairment. J Nucl Med. 2017;58:1888–98.

    CAS 

    Google Scholar
     

  • Garraux G, Phillips C, Schrouff J, Kreisler A, Lemaire C, Degueldre C, Delcour C, Hustinx R, Luxen A, Destée A, Salmon E. Multiclass classification of FDG PET scans for the excellence between Parkinson’s illness and atypical parkinsonian syndromes. Neuroimage Clin. 2013;2:883–93.


    Google Scholar
     

  • Mudali D, Teune LK, Renken RJ, Leenders KL, Roerdink JB. Classification of Parkinsonian syndromes from FDG-PET mind information utilizing resolution bushes with SSM/PCA options. Comput Math Methods Med. 2015;2015:136921.

    CAS 

    Google Scholar
     

  • Nalls MA, Pankratz N, Lill CM, Do CB, Hernandez DG, Saad M, DeStefano AL, Kara E, Bras J, Sharma M, et al. Large-scale meta-analysis of genome-wide affiliation information identifies six new danger loci for Parkinson’s illness. Nat Genet. 2014;46:989–93.

    CAS 

    Google Scholar
     

  • Wassouf Z, Schulze-Hentrich JM. Alpha-synuclein on the nexus of genes and atmosphere: the influence of environmental enrichment and stress on mind well being and illness. J Neurochem. 2019;150:591–604.

    CAS 

    Google Scholar
     

  • Goedert M. Alpha-synuclein and neurodegenerative illnesses. Nat Rev Neurosci. 2001;2:492–501.

    CAS 

    Google Scholar
     

  • Vekrellis Ok, Xilouri M, Emmanouilidou E, Rideout HJ, Stefanis L. Pathological roles of α-synuclein in neurological issues. Lancet Neurol. 2011;10:1015–25.

    CAS 

    Google Scholar
     

  • Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M. Alpha-synuclein in Lewy our bodies. Nature. 1997;388:839–40.

    CAS 

    Google Scholar
     

  • Wakabayashi Ok, Tanji Ok, Odagiri S, Miki Y, Mori F, Takahashi H. The Lewy Body in Parkinson’s Disease and Related Neurodegenerative Disorders. Mol Neurobiol. 2013;47:495–508.

    CAS 

    Google Scholar
     

  • Benskey MJ, Perez RG, Manfredsson FP. The contribution of alpha synuclein to neuronal survival and performance – Implications for Parkinson’s illness. J Neurochem. 2016;137:331–59.

    CAS 

    Google Scholar
     

  • Polymeropoulos MH. Mutation within the -Synuclein Gene Identified in Families with Parkinson’s Disease. Science. 1997;276:2045–7.

    CAS 

    Google Scholar
     

  • Kruger R, Kuhn W, Muller T, Woitalla D, Graeber M, Kosel S, Przuntek H, Epplen JT, Schols L, Riess O. Ala30Pro mutation within the gene encoding alpha-synuclein in Parkinson’s illness. Nat Genet. 1998;18:106–8.

    CAS 

    Google Scholar
     

  • Zarranz JJ, Alegre J, Gómez-Esteban JC, Lezcano E, Ros R, Ampuero I, Vidal L, Hoenicka J, Rodriguez O, Atarés B, et al. The new mutation, E46K, of α-synuclein causes parkinson and Lewy physique dementia. Ann Neurol. 2004;55:164–73.

    CAS 

    Google Scholar
     

  • Appel-Cresswell S, Vilarino-Guell C, Encarnacion M, Sherman H, Yu I, Shah B, Weir D, Thompson C, Szu-Tu C, Trinh J, et al. Alpha-synuclein p.H50Q, a novel pathogenic mutation for Parkinson’s illness. Mov Disord. 2013;28:811–3.

    CAS 

    Google Scholar
     

  • Kiely AP, Asi YT, Kara E, Limousin P, Ling H, Lewis P, Proukakis C, Quinn N, Lees AJ, Hardy J, et al. α-Synucleinopathy related to G51D SNCA mutation: a hyperlink between Parkinson’s illness and a number of system atrophy? Acta Neuropathol. 2013;125:753–69.

    CAS 

    Google Scholar
     

  • Pasanen P, Myllykangas L, Siitonen M, Raunio A, Kaakkola S, Lyytinen J, Tienari PJ, Pöyhönen M, Paetau A. A novel α-synuclein mutation A53E related to atypical a number of system atrophy and Parkinson’s disease-type pathology. Neurobiol Aging. 2014;35:2180.e2181-2180.e2185.


    Google Scholar
     

  • Lesage S, Anheim M, Letournel F, Bousset L, Honoré A, Rozas N, Pieri L, Madiona Ok, Dürr A, Melki R, et al. G51D α-synuclein mutation causes a novel Parkinsonian-pyramidal syndrome. Ann Neurol. 2013;73:459–71.

    CAS 

    Google Scholar
     

  • Proukakis C, Dudzik CG, Brier T, MacKay DS, Cooper JM, Millhauser GL, Houlden H, Schapira AH. A novel α-synuclein missense mutation in Parkinson illness. Neurology. 2013;80:1062.


    Google Scholar
     

  • Phillipson OT. Alpha-synuclein, epigenetics, mitochondria, metabolism, calcium visitors, & circadian dysfunction in Parkinson’s illness. An built-in technique for administration. Ageing Res Rev. 2017;40:149–67.

    CAS 

    Google Scholar
     

  • Yoshino H, Hirano M, Stoessl AJ, Imamichi Y, Ikeda A, Li Y, Funayama M, Yamada I, Nakamura Y, Sossi V, et al. Homozygous alpha-synuclein p.A53V in familial Parkinson’s illness. Neurobiol Aging. 2017;57(248):e247-248 e212.


    Google Scholar
     

  • Chavarría C, Souza JM. Oxidation and nitration of α-synuclein and their implications in neurodegenerative illnesses. Arch Biochem Biophys. 2013;533:25–32.


    Google Scholar
     

  • Shimura H, Schlossmacher MG, Hattori N, Frosch MP, Trockenbacher A, Schneider R, Mizuno Y, Kosik KS, Selkoe DJ. Ubiquitination of a brand new type of alpha-synuclein by parkin from human mind: implications for Parkinson’s illness. Science. 2001;293:263–9.

    CAS 

    Google Scholar
     

  • Paleologou KE, Oueslati A, Shakked G, Rospigliosi CC, Kim HY, Lamberto GR, Fernandez CO, Schmid A, Chegini F, Gai WP, et al. Phosphorylation at S87 Is Enhanced in Synucleinopathies, Inhibits -Synuclein Oligomerization, and Influences Synuclein-Membrane Interactions. J Neurosci. 2010;30:3184–98.

    CAS 

    Google Scholar
     

  • Shah M, Seibyl J, Cartier A, Bhatt R, Catafau AM. Molecular imaging insights into neurodegeneration: concentrate on alpha-synuclein radiotracers. J Nucl Med. 2014;55:1397–400.

    CAS 

    Google Scholar
     

  • Ye L, Velasco A, Fraser G, Beach TG, Sue L, Osredkar T, Libri V, Spillantini MG, Goedert M, Lockhart A. In vitro excessive affinity alpha-synuclein binding websites for the amyloid imaging agent PIB will not be matched by binding to Lewy our bodies in postmortem human mind. J Neurochem. 2008;105:1428–37.

    CAS 

    Google Scholar
     

  • Fodero-Tavoletti MT, Smith DP, McLean CA, Adlard PA, Barnham KJ, Foster LE, Leone L, Perez Ok, Cortes M, Culvenor JG, et al. In vitro characterization of Pittsburgh compound-B binding to Lewy our bodies. J Neurosci. 2007;27:10365–71.

    CAS 

    Google Scholar
     

  • Levigoureux E, Lancelot S, Bouillot C, Chauveau F, Verdurand M, Verchere J, Billard T, Baron T, Zimmer L. Binding of the PET radiotracer [(1)(8)F]BF227 doesn’t mirror the presence of alpha-synuclein aggregates in transgenic mice. Curr Alzheimer Res. 2014;11:955–60.

    CAS 

    Google Scholar
     

  • Fodero-Tavoletti MT, Mulligan RS, Okamura N, Furumoto S, Rowe CC, Kudo Y, Masters CL, Cappai R, Yanai Ok, Villemagne VL. In vitro characterisation of BF227 binding to alpha-synuclein/Lewy our bodies. Eur J Pharmacol. 2009;617:54–8.

    CAS 

    Google Scholar
     

  • Yu L, Cui J, Padakanti PK, Engel L, Bagchi DP, Kotzbauer PT, Tu Z. Synthesis and in vitro analysis of alpha-synuclein ligands. Bioorg Med Chem. 2012;20:4625–34.

    CAS 

    Google Scholar
     

  • Bagchi DP, Yu L, Perlmutter JS, Xu J, Mach RH, Tu Z, Kotzbauer PT. Binding of the Radioligand SIL23 to α-Synuclein Fibrils in Parkinson Disease Brain Tissue Establishes Feasibility and Screening Approaches for Developing a Parkinson Disease Imaging Agent. PLoS ONE. 2013;8(2):e55031.

    CAS 

    Google Scholar
     

  • Zhang X, Jin H, Padakanti P, Li J, Yang H, Fan J, Mach R, Kotzbauer P, Tu Z. Radiosynthesis and in Vivo Evaluation of Two PET Radioligands for Imaging α-Synuclein. Appl Sci. 2014;4(1):66–78.


    Google Scholar
     

  • Ferrie JJ, Lengyel-Zhand Z, Janssen B, Lougee MG, Giannakoulias S, Hsieh CJ, Pagar VV, Weng CC, Xu H, Graham TJA, et al. Identification of a nanomolar affinity alpha-synuclein fibril imaging probe by ultra-high throughput in silico screening. Chem Sci. 2020;11:12746–54.

    CAS 

    Google Scholar
     

  • Miranda-Azpiazu P, Svedberg M, Higuchi M, Ono M, Jia Z, Sunnemark D, Elmore CS, Schou M, Varrone A. Identification and in vitro characterization of C05–01, a PBB3 spinoff with improved affinity for alpha-synuclein. Brain Res. 2020;1749:147131.

    CAS 

    Google Scholar
     

  • Chen YF, Bian J, Zhang P, Bu LL, Shen Y, Yu WB, Lu XH, Lin X, Ye DY, Wang J, Chu Y. Design, synthesis and identification of N, N-dibenzylcinnamamide (DBC) derivatives as novel ligands for alpha-synuclein fibrils by SPR analysis system. Bioorg Med Chem. 2020;28:115358.

    CAS 

    Google Scholar
     

  • Kaide S, Watanabe H, Shimizu Y, Iikuni S, Nakamoto Y, Hasegawa M, Itoh Ok, Ono M. Identification and Evaluation of Bisquinoline Scaffold as a New Candidate for alpha-Synuclein-PET Imaging. ACS Chem Neurosci. 2020;11:4254–61.

    CAS 

    Google Scholar
     

  • Kuebler L, Buss S, Leonov A, Ryazanov S, Schmidt F, Maurer A, Weckbecker D, Landau AM, Lillethorup TP, Bleher D, et al. [(11)C]MODAG-001-towards a PET tracer concentrating on alpha-synuclein aggregates. Eur J Nucl Med Mol Imaging. 2021;48:1759–72.

    CAS 

    Google Scholar
     

  • Matsuoka Ok, Ono M, Takado Y, Hirata Ok, Endo H, Ohfusa T, Kojima T, Yamamoto T, Onishi T, Orihara A, et al. High-Contrast Imaging of α-Synuclein Pathologies in Living Patients with Multiple System Atrophy. Movement Disorders. 2022;37(10):2159–61. https://doi.org/10.1002/mds.29186.

  • Capotosti F, Vokali E, Molette J, Ravache M, Delgado C, Kocher J, Pittet L, Dimitrakopoulos IK, Di-Bonaventura I, Touilloux T, et al. The growth of [18F]ACI-12589, a excessive affinity and selective alpha-synuclein radiotracer, as a biomarker for Parkinson’s illness and different synucleinopathies. Alzheimers Dement. 2021;17:e053943.


    Google Scholar
     

  • Roshanbin S, Xiong M, Hultqvist G, Söderberg L, Zachrisson O, Meier S, Ekmark-Lewén S, Bergström J, Ingelsson M, Sehlin D, Syvänen S. In vivo imaging of alpha-synuclein with antibody-based PET. Neuropharmacology. 2022;208:108985.

    CAS 

    Google Scholar
     

  • Fujiwara H, Hasegawa M, Dohmae N, Kawashima A, Masliah E, Goldberg MS, Shen J, Takio Ok, Iwatsubo T. alpha-Synuclein is phosphorylated in synucleinopathy lesions. Nat Cell Biol. 2002;4:160–4.

    CAS 

    Google Scholar
     

  • Irwin DJ, Lee VM, Trojanowski JQ. Parkinson’s illness dementia: convergence of α-synuclein, tau and amyloid-β pathologies. Nat Rev Neurosci. 2013;14:626–36.

    CAS 

    Google Scholar
     

  • Van der Perren A, Gelders G, Fenyi A, Bousset L, Brito F, Peelaerts W, Van den Haute C, Gentleman S, Melki R, Baekelandt V. The structural variations between patient-derived α-synuclein strains dictate traits of Parkinson’s illness, a number of system atrophy and dementia with Lewy our bodies. Acta Neuropathol. 2020;139:977–1000.


    Google Scholar
     

  • McKeith IG, Galasko D, Kosaka Ok, Perry EK, Dickson DW, Hansen LA, Salmon DP, Lowe J, Mirra SS, Byrne EJ, et al. Consensus tips for the medical and pathologic prognosis of dementia with Lewy our bodies (DLB): report of the consortium on DLB worldwide workshop. Neurology. 1996;47:1113–24.

    CAS 

    Google Scholar
     

  • Lippa CF, Duda JE, Grossman M, Hurtig HI, Aarsland D, Boeve BF, Brooks DJ, Dickson DW, Dubois B, Emre M, et al. DLB and PDD boundary points: prognosis, therapy, molecular pathology, and biomarkers. Neurology. 2007;68:812–9.

    CAS 

    Google Scholar
     

  • van Rumund A, Green AJE, Fairfoul G, Esselink RAJ, Bloem BR, Verbeek MM. α-Synuclein real-time quaking-induced conversion within the cerebrospinal fluid of unsure instances of parkinsonism. Ann Neurol. 2019;85:777–81.


    Google Scholar
     

  • Iranzo A, Fairfoul G, Ayudhaya ACN, Serradell M, Gelpi E, Vilaseca I, Sanchez-Valle R, Gaig C, Santamaria J, Tolosa E, et al. Detection of α-synuclein in CSF by RT-QuIC in sufferers with remoted rapid-eye-movement sleep behaviour dysfunction: a longitudinal observational examine. Lancet Neurol. 2021;20:203–12.

    CAS 

    Google Scholar
     

  • Lee JM, Derkinderen P, Kordower JH, Freeman R, Munoz DG, Kremer T, Zago W, Hutten SJ, Adler CH, Serrano GE, Beach TG. The Search for a Peripheral Biopsy Indicator of α-Synuclein Pathology for Parkinson Disease. J Neuropathol Exp Neurol. 2017;76:2–15.

    CAS 

    Google Scholar
     

  • Antelmi E, Donadio V, Incensi A, Plazzi G, Liguori R. Skin nerve phosphorylated α-synuclein deposits in idiopathic REM sleep conduct dysfunction. Neurology. 2017;88:2128–31.

    CAS 

    Google Scholar
     

  • Donadio V, Incensi A, Piccinini C, Cortelli P, Giannoccaro MP, Baruzzi A, Liguori R. Skin nerve misfolded α-synuclein in pure autonomic failure and Parkinson illness. Ann Neurol. 2016;79:306–16.

    CAS 

    Google Scholar
     

  • Donadio V, Incensi A, Rizzo G, Capellari S, Pantieri R, Stanzani Maserati M, Devigili G, Eleopra R, Defazio G, Montini F, et al. A brand new potential biomarker for dementia with Lewy our bodies: Skin nerve α-synuclein deposits. Neurology. 2017;89:318–26.

    CAS 

    Google Scholar
     

  • Gibbons CH, Garcia J, Wang N, Shih LC, Freeman R. The diagnostic discrimination of cutaneous α-synuclein deposition in Parkinson illness. Neurology. 2016;87:505–12.

    CAS 

    Google Scholar
     

  • Visanji NP, Mollenhauer B, Beach TG, Adler CH, Coffey CS, Kopil CM, Dave KD, Foroud T, Chahine L, Jennings D. The Systemic Synuclein Sampling Study: towards a biomarker for Parkinson’s illness. Biomark Med. 2017;11:359–68.

    CAS 

    Google Scholar
     

  • Wang Z, Becker Ok, Donadio V, Siedlak S, Yuan J, Rezaee M, Incensi A, Kuzkina A, Orrú CD, Tatsuoka C, et al. Skin α-Synuclein Aggregation Seeding Activity as a Novel Biomarker for Parkinson Disease. JAMA Neurol. 2020;78:1–11.


    Google Scholar
     

  • Donadio V, Doppler Ok, Incensi A, Kuzkina A, Janzen A, Mayer G, Volkmann J, Rizzo G, Antelmi E, Plazzi G, et al. Abnormal α-synuclein deposits in pores and skin nerves: intra- and inter-laboratory reproducibility. Eur J Neurol. 2019;26:1245–51.

    CAS 

    Google Scholar
     

  • Fields CR, Bengoa-Vergniory N, Wade-Martins R. Targeting Alpha-Synuclein as a Therapy for Parkinson’s Disease. Front Mol Neurosci. 2019;12:299–299.

    CAS 

    Google Scholar
     

  • Sapru MK, Yates JW, Hogan S, Jiang L, Halter J, Bohn MC. Silencing of human alpha-synuclein in vitro and in rat mind utilizing lentiviral-mediated RNAi. Exp Neurol. 2006;198:382–90.

    CAS 

    Google Scholar
     

  • Takahashi M, Suzuki M, Fukuoka M, Fujikake N, Watanabe S, Murata M, Wada Ok, Nagai Y, Hohjoh H. Normalization of Overexpressed α-Synuclein Causing Parkinson’s Disease By a Moderate Gene Silencing With RNA Interference. Molecular Therapy – Nucleic Acids. 2015;4:e241.


    Google Scholar
     

  • Lewis J, Melrose H, Bumcrot D, Hope A, Zehr C, Lincoln S, Braithwaite A, He Z, Ogholikhan S, Hinkle Ok, et al. In vivo silencing of alpha-synuclein utilizing bare siRNA. Mol Neurodegener. 2008;3:19.


    Google Scholar
     

  • Mittal S, Bjørnevik Ok, Im DS, Flierl A, Dong X, Locascio JJ, Abo KM, Long E, Jin M, Xu B, et al. β2-Adrenoreceptor is a regulator of the α-synuclein gene driving danger of Parkinson’s illness. Science. 2017;357:891–8.

    CAS 

    Google Scholar
     

  • Klucken J, Shin Y, Masliah E, Hyman BT, McLean PJ. Hsp70 Reduces alpha-Synuclein Aggregation and Toxicity. J Biol Chem. 2004;279:25497–502.

    CAS 

    Google Scholar
     

  • Cox D, Selig E, Griffin MDW, Carver JA, Ecroyd H. Small Heat-shock Proteins Prevent α-Synuclein Aggregation through Transient Interactions and Their Efficacy Is Affected by the Rate of Aggregation. J Biol Chem. 2016;291:22618–29.

    CAS 

    Google Scholar
     

  • Ghochikyan A, Petrushina I, Davtyan H, Hovakimyan A, Saing T, Davtyan A, Cribbs DH, Agadjanyan MG. Immunogenicity of epitope vaccines concentrating on completely different B cell antigenic determinants of human α-synuclein: Feasibility examine. Neurosci Lett. 2014;560:86–91.

    CAS 

    Google Scholar
     

  • Masliah E, Rockenstein E, Adame A, Alford M, Crews L, Hashimoto M, Seubert P, Lee M, Goldstein J, Chilcote T, et al. Effects of alpha-synuclein immunization in a mouse mannequin of Parkinson’s illness. Neuron. 2005;46:857–68.

    CAS 

    Google Scholar
     

  • Sanchez-Guajardo V, Annibali A, Jensen PH, Romero-Ramos M. alpha-Synuclein vaccination prevents the buildup of parkinson disease-like pathologic inclusions in striatum in affiliation with regulatory T cell recruitment in a rat mannequin. J Neuropathol Exp Neurol. 2013;72:624–45.

    CAS 

    Google Scholar
     

  • Masliah E, Rockenstein E, Mante M, Crews L, Spencer B, Adame A, Patrick C, Trejo M, Ubhi Ok, Rohn TT, et al. Passive immunization reduces behavioral and neuropathological deficits in an alpha-synuclein transgenic mannequin of Lewy physique illness. PLoS ONE. 2011;6:e19338.

    CAS 

    Google Scholar
     

  • Schenk DB, Koller M, Ness DK, Griffith SG, Grundman M, Zago W, Soto J, Atiee G, Ostrowitzki S, Kinney GG. First-in-human evaluation of PRX002, an anti-alpha-synuclein monoclonal antibody, in wholesome volunteers. Mov Disord. 2017;32:211–8.

    CAS 

    Google Scholar
     

  • Pagano G, Taylor KI, Anzures-Cabrera J, Marchesi M, Simuni T, Marek Ok, Postuma RB, Pavese N, Stocchi F, Azulay JP, et al. Trial of Prasinezumab in Early-Stage Parkinson’s Disease. N Engl J Med. 2022;387:421–32.

    CAS 

    Google Scholar
     

  • Fjord-Larsen L, Thougaard A, Wegener KM, Christiansen J, Larsen F, Schrøder-Hansen LM, Kaarde M, Ditlevsen DK. Nonclinical security analysis, pharmacokinetics, and goal engagement of Lu AF82422, a monoclonal IgG1 antibody towards alpha-synuclein in growth for therapy of synucleinopathies. MAbs. 2021;13:1994690.


    Google Scholar
     

  • Sevigny J, Chiao P, Bussière T, Weinreb PH, Williams L, Maier M, Dunstan R, Salloway S, Chen T, Ling Y, et al. The antibody aducanumab reduces Aβ plaques in Alzheimer’s illness. Nature. 2016;537:50–6.

    CAS 

    Google Scholar
     

  • van Dyck CH, Swanson CJ, Aisen P, Bateman RJ, Chen C, Gee M, Kanekiyo M, Li D, Reyderman L, Cohen S, et al. Lecanemab in Early Alzheimer’s Disease. N Engl J Med. 2023;388:9–21.


    Google Scholar
     

  • Weihofen A, Liu Y, Arndt JW, Huy C, Quan C, Smith BA, Baeriswyl JL, Cavegn N, Senn L, Su L, et al. Development of an aggregate-selective, human-derived α-synuclein antibody BIIB054 that ameliorates illness phenotypes in Parkinson’s illness fashions. Neurobiol Dis. 2019;124:276–88.

    CAS 

    Google Scholar
     

  • Lindström V, Fagerqvist T, Nordström E, Eriksson F, Lord A, Tucker S, Andersson J, Johannesson M, Schell H, Kahle PJ, et al. Immunotherapy concentrating on α-synuclein protofibrils decreased pathology in (Thy-1)-h[A30P] α-synuclein mice. Neurobiol Dis. 2014;69:134–43.


    Google Scholar
     

  • Nordström E, Eriksson F, Sigvardson J, Johannesson M, Kasrayan A, Jones-Kostalla M, Appelkvist P, Söderberg L, Nygren P, Blom M, et al. ABBV-0805, a novel antibody selective for soluble aggregated α-synuclein, prolongs lifespan and prevents buildup of α-synuclein pathology in mouse fashions of Parkinson’s illness. Neurobiol Dis. 2021;161:105543.


    Google Scholar
     

  • Chen SW, Drakulic S, Deas E, Ouberai M, Aprile FA, Arranz R, Ness S, Roodveldt C, Guilliams T, De-Genst EJ, et al. Structural characterization of poisonous oligomers which can be kinetically trapped throughout α-synuclein fibril formation. Proc Natl Acad Sci USA. 2015;112:E1994-2003.

    CAS 

    Google Scholar
     

  • Vaikath NN, Hmila I, Gupta V, Erskine D, Ingelsson M, El-Agnaf OMA. Antibodies towards alpha-synuclein: instruments and therapies. J Neurochem. 2019;150:612–25.

    CAS 

    Google Scholar
     

  • Kariolis MS, Wells RC, Getz JA, Kwan W, Mahon CS, Tong R, Kim DJ, Srivastava A, Bedard C, Henne KR, et al. Brain supply of therapeutic proteins utilizing an Fc fragment blood-brain barrier transport automobile in mice and monkeys. Sci Transl Med. 2020;12(545):eaay1359.

    CAS 

    Google Scholar
     

  • Roshanbin S, Julku U, Xiong M, Eriksson J, Masliah E, Hultqvist G, Bergström J, Ingelsson M, Syvänen S, Sehlin D. Reduction of αSYN Pathology in a Mouse Model of PD Using a Brain-Penetrating Bispecific Antibody. Pharmaceutics. 2022;14(7):1412.

    CAS 

    Google Scholar
     

  • Langston JW, Ballard P, Tetrud JW, Irwin I. Chronic Parkinsonism in people as a result of a product of meperidine-analog synthesis. Science. 1983;219:979–80.

    CAS 

    Google Scholar
     

  • Burns RS, Chiueh CC, Markey SP, Ebert MH, Jacobowitz DM, Kopin IJ. A primate mannequin of parkinsonism: selective destruction of dopaminergic neurons within the pars compacta of the substantia nigra by N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Proc Natl Acad Sci USA. 1983;80:4546–50.

    CAS 

    Google Scholar
     

  • Langston JW, Forno LS, Rebert CS, Irwin I. Selective nigral toxicity after systemic administration of 1-methyl-4-phenyl-1,2,5,6-tetrahydropyrine (MPTP) within the squirrel monkey. Brain Res. 1984;292:390–4.

    CAS 

    Google Scholar
     

  • Schneider JS, Denaro FJ. Astrocytic responses to the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in cat and mouse mind. J Neuropathol Exp Neurol. 1988;47:452–8.

    CAS 

    Google Scholar
     

  • Sayre LM. Biochemical mechanism of motion of the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Toxicol Lett. 1989;48:121–49.

    CAS 

    Google Scholar
     

  • Tipton KF, Singer TP. Advances in our understanding of the mechanisms of the neurotoxicity of MPTP and associated compounds. J Neurochem. 1993;61:1191–206.

    CAS 

    Google Scholar
     

  • Schapira AH, Cooper JM, Dexter D, Clark JB, Jenner P, Marsden CD. Mitochondrial complicated I deficiency in Parkinson’s illness. J Neurochem. 1990;54:823–7.

    CAS 

    Google Scholar
     

  • Greenamyre JT, Sherer TB, Betarbet R, Panov AV. Complex I and Parkinson’s Disease. IUBMB Life. 2001;52:135–41.

    CAS 

    Google Scholar
     

  • Su B, Wang X, Zheng L, Perry G, Smith MA, Zhu X. Abnormal mitochondrial dynamics and neurodegenerative illnesses. Biochem Biophys Acta. 2010;1802:135–42.

    CAS 

    Google Scholar
     

  • Henchcliffe C, Beal MF. Mitochondrial biology and oxidative stress in Parkinson illness pathogenesis. Nat Clin Pract Neurol. 2008;4:600–9.

    CAS 

    Google Scholar
     

  • Lin MT, Beal MF. Mitochondrial dysfunction and oxidative stress in neurodegenerative illnesses. Nature. 2006;443:787–95.

    CAS 

    Google Scholar
     

  • Bose A, Beal MF. Mitochondrial dysfunction in Parkinson’s illness. J Neurochem. 2016;139(Suppl 1):216–31.

    CAS 

    Google Scholar
     

  • Sulzer D, Zecca L. Intraneuronal dopamine-quinone synthesis: a evaluation. Neurotox Res. 2000;1:181–95.

    CAS 

    Google Scholar
     

  • Mansur A, Comley R, Lewis Y, Middleton L, Huiban M, Guo Q, Passchier J, Tsukada H, Gunn R, Rabiner E. MIND MAPS CONSORTIUM ft: <sturdy>Imaging of Mitochondrial Complex 1 with <sup>18</sup>F-BCPP-EF within the Healthy Human Brain</sturdy>. J Nucl Med. 2018;59:1709–1709.


    Google Scholar
     

  • Berman DS, Maddahi J, Tamarappoo BK, Czernin J, Taillefer R, Udelson JE, Gibson CM, Devine M, Lazewatsky J, Bhat G, Washburn D. Phase II security and medical comparability with single-photon emission computed tomography myocardial perfusion imaging for detection of coronary artery illness: flurpiridaz F 18 positron emission tomography. J Am Coll Cardiol. 2013;61:469–77.

    CAS 

    Google Scholar
     

  • Bengs S, Warnock GI, Portmann A, Mikail N, Rossi A, Ahmed H, Etter D, Treyer V, Gisler L, Pfister SK, et al. Rest/stress myocardial perfusion imaging by positron emission tomography with (18)F-Flurpiridaz: A feasibility examine in mice. J Nucl Cardiol. 2022. https://doi.org/10.1007/s12350-022-02968-9.

  • Haider A, Bengs S, Portmann A, Rossi A, Ahmed H, Etter D, Warnock GI, Mikail N, Grämer M, Meisel A, et al. Role of intercourse hormones in modulating myocardial perfusion and coronary movement reserve. Eur J Nucl Med Mol Imaging. 2022;49:2209–18.

    CAS 

    Google Scholar
     

  • Khan NL, Valente EM, Bentivoglio AR, Wood NW, Albanese A, Brooks DJ, Piccini P. Clinical and subclinical dopaminergic dysfunction in PARK6-linked parkinsonism: an 18F-dopa PET examine. Ann Neurol. 2002;52:849–53.


    Google Scholar
     

  • Gan-Or Z, Liong C, Alcalay RN. GBA-Associated Parkinson’s Disease and Other Synucleinopathies. Curr Neurol Neurosci Rep. 2018;18:44.


    Google Scholar
     

  • Choi JH, Stubblefield B, Cookson MR, Goldin E, Velayati A, Tayebi N, Sidransky E. Aggregation of alpha-synuclein in mind samples from topics with glucocerebrosidase mutations. Mol Genet Metab. 2011;104:185–8.

    CAS 

    Google Scholar
     

  • Mazzulli JR, Xu YH, Sun Y, Knight AL, McLean PJ, Caldwell GA, Sidransky E, Grabowski GA, Krainc D. Gaucher illness glucocerebrosidase and alpha-synuclein type a bidirectional pathogenic loop in synucleinopathies. Cell. 2011;146:37–52.

    CAS 

    Google Scholar
     

  • Migdalska-Richards A, Daly L, Bezard E, Schapira AH. Ambroxol results in glucocerebrosidase and alpha-synuclein transgenic mice. Ann Neurol. 2016;80:766–75.

    CAS 

    Google Scholar
     

  • Zimprich A, Biskup S, Leitner P, Lichtner P, Farrer M, Lincoln S, Kachergus J, Hulihan M, Uitti RJ, Calne DB, et al. Mutations in LRRK2 trigger autosomal-dominant parkinsonism with pleomorphic pathology. Neuron. 2004;44:601–7.

    CAS 

    Google Scholar
     

  • Chen J, Chen Y, Pu J. Leucine-Rich Repeat Kinase 2 in Parkinson’s Disease: Updated from Pathogenesis to Potential Therapeutic Target. Eur Neurol. 2018;79:256–65.

    CAS 

    Google Scholar
     

  • Chen Z, Shao T, Gao W, Fu H, Collier TL, Rong J, Deng X, Yu Q, Zhang X, Davenport AT, et al. Synthesis and Preliminary Evaluation of [(11) C]GNE-1023 as a Potent PET Probe for Imaging Leucine-Rich Repeat Kinase 2 (LRRK2) in Parkinson’s Disease. ChemMedChem. 2019;14:1580–5.

    CAS 

    Google Scholar
     

  • Malik N, Kornelsen R, McCormick S, Colpo N, Merkens H, Bendre S, Benard F, Sossi V, Schirrmacher R, Schaffer P. Development and organic analysis of[(18)F]FMN3PA & [(18)F]FMN3PU for leucine-rich repeat kinase 2 (LRRK2) in vivo PET imaging. Eur J Med Chem. 2021;211:113005.

    CAS 

    Google Scholar
     

  • Rideout HJ, Chartier-Harlin MC, Fell MJ, Hirst WD, Huntwork-Rodriguez S, Leyns CEG, Mabrouk OS, Taymans JM. The Current State-of-the Art of LRRK2-Based Biomarker Assay Development in Parkinson’s Disease. Front Neurosci. 2020;14:865.


    Google Scholar
     

  • Chen Z, Chen J, Chen L, Yoo C-H, Rong J, Fu H, Shao T, Coffman Ok, Steyn SJ, Davenport AT, et al: Imaging Leucine-Rich Repeat Kinase 2 In Vivo with 18F-Labeled Positron Emission Tomography Ligand. J Med Chem. 2022.

  • Tolosa E, Vila M, Klein C, Rascol O. LRRK2 in Parkinson illness: challenges of medical trials. Nat Rev Neurol. 2020;16:97–107.


    Google Scholar
     

  • Lin X, Parisiadou L, Gu XL, Wang L, Shim H, Sun L, Xie C, Long CX, Yang WJ, Ding J, et al. Leucine-rich repeat kinase 2 regulates the development of neuropathology induced by Parkinson’s-disease-related mutant alpha-synuclein. Neuron. 2009;64:807–27.

    CAS 

    Google Scholar
     

  • Cookson MR. The position of leucine-rich repeat kinase 2 (LRRK2) in Parkinson’s illness. Nat Rev Neurosci. 2010;11:791–7.

    CAS 

    Google Scholar
     

  • Simunovic F, Yi M, Wang Y, Macey L, Brown LT, Krichevsky AM, Andersen SL, Stephens RM, Benes FM, Sonntag KC. Gene expression profiling of substantia nigra dopamine neurons: additional insights into Parkinson’s illness pathology. Brain. 2009;132:1795–809.


    Google Scholar
     

  • Manzoni C, Lewis PA. LRRK2 and Autophagy. Adv Neurobiol. 2017;14:89–105.


    Google Scholar
     

  • Jennings D, Huntwork-Rodriguez S, Henry AG, Sasaki JC, Meisner R, Diaz D, Solanoy H, Wang X, Negrou E, Bondar VV, et al: Preclinical and medical analysis of the LRRK2 inhibitor DNL201 for Parkinson’s illness. Sci Transl Med. 2022;14:eabj2658.

  • West AB. Achieving neuroprotection with LRRK2 kinase inhibitors in Parkinson illness. Exp Neurol. 2017;298:236–45.

    CAS 

    Google Scholar
     

  • Zhao HT, John N, Delic V, Ikeda-Lee Ok, Kim A, Weihofen A, Swayze EE, Kordasiewicz HB, West AB, Volpicelli-Daley LA. LRRK2 Antisense Oligonucleotides Ameliorate alpha-Synuclein Inclusion Formation in a Parkinson’s Disease Mouse Model. Mol Therapy Nucleic Acids. 2017;8:508–19.

    CAS 

    Google Scholar
     

  • Ntetsika T, Papathoma PE, Markaki I. Novel focused therapies for Parkinson’s illness. Mol Med. 2021;27:17.

    CAS 

    Google Scholar
     

  • Lee JY, Koga H, Kawaguchi Y, Tang W, Wong E, Gao YS, Pandey UB, Kaushik S, Tresse E, Lu J, et al. HDAC6 controls autophagosome maturation important for ubiquitin-selective quality-control autophagy. Embo j. 2010;29:969–80.

    CAS 

    Google Scholar
     

  • Pandey UB, Nie Z, Batlevi Y, McCray BA, Ritson GP, Nedelsky NB, Schwartz SL, DiProspero NA, Knight MA, Schuldiner O, et al. HDAC6 rescues neurodegeneration and gives an important hyperlink between autophagy and the UPS. Nature. 2007;447:860–4.


    Google Scholar
     

  • Simões-Pires C, Zwick V, Nurisso A, Schenker E, Carrupt PA, Cuendet M. HDAC6 as a goal for neurodegenerative illnesses: what makes it completely different from the opposite HDACs? Mol Neurodegener. 2013;8:7.


    Google Scholar
     

  • Koole M, Van Weehaeghe D, Serdons Ok, Herbots M, Cawthorne C, Celen S, Schroeder FA, Hooker JM, Bormans G, de Hoon J, et al. Clinical validation of the novel HDAC6 radiotracer [(18)F]EKZ-001 within the human mind. Eur J Nucl Med Mol Imaging. 2021;48:596–611.

    CAS 

    Google Scholar
     

  • Vila M, Jackson-Lewis V, Guegan C, Wu DC, Teismann P, Choi DK, Tieu Ok, Przedborski S. The position of glial cells in Parkinson’s illness. Curr Opin Neurol. 2001;14:483–9.

    CAS 

    Google Scholar
     

  • Kurkowska-Jastrzebska I, Wronska A, Kohutnicka M, Czlonkowski A, Czlonkowska A. The inflammatory response following 1-methyl-4-phenyl-1,2,3, 6-tetrahydropyridine intoxication in mouse. Exp Neurol. 1999;156:50–61.

    CAS 

    Google Scholar
     

  • Fu R, Shen Q, Xu P, Luo JJ, Tang Y. Phagocytosis of microglia within the central nervous system illnesses. Mol Neurobiol. 2014;49:1422–34.

    CAS 

    Google Scholar
     

  • Nayak D, Roth TL, McGavern DB. Microglia growth and performance. Annu Rev Immunol. 2014;32:367–402.

    CAS 

    Google Scholar
     

  • Rupprecht R, Papadopoulos V, Rammes G, Baghai TC, Fan J, Akula N, Groyer G, Adams D, Schumacher M. Translocator protein (18 okDa) (TSPO) as a therapeutic goal for neurological and psychiatric issues. Nat Rev Drug Discovery. 2010;9:971–88.

    CAS 

    Google Scholar
     

  • Venneti S, Lopresti BJ, Wiley CA. The peripheral benzodiazepine receptor (Translocator protein 18kDa) in microglia: from pathology to imaging. Prog Neurobiol. 2006;80:308–22.

    CAS 

    Google Scholar
     

  • Brooks DJ. Technology Insight: imaging neurodegeneration in Parkinson’s illness. Nat Clin Pract Neurol. 2008;4:267–77.

    CAS 

    Google Scholar
     

  • Imamura Ok, Hishikawa N, Sawada M, Nagatsu T, Yoshida M, Hashizume Y. Distribution of main histocompatibility complicated class II-positive microglia and cytokine profile of Parkinson’s illness brains. Acta Neuropathol. 2003;106:518–26.

    CAS 

    Google Scholar
     

  • Bartels AL, Willemsen AT, Doorduin J, de Vries EF, Dierckx RA, Leenders KL. [11C]-PK11195 PET: quantification of neuroinflammation and a monitor of anti-inflammatory therapy in Parkinson’s illness? Parkinsonism Relat Disord. 2010;16:57–9.

    CAS 

    Google Scholar
     

  • Gerhard A, Pavese N, Hotton G, Turkheimer F, Es M, Hammers A, Eggert Ok, Oertel W, Banati RB, Brooks DJ. In vivo imaging of microglial activation with [11C](R)-PK11195 PET in idiopathic Parkinson’s illness. Neurobiol Dis. 2006;21:404–12.

    CAS 

    Google Scholar
     

  • Ouchi Y, Yoshikawa E, Sekine Y, Futatsubashi M, Kanno T, Ogusu T, Torizuka T. Microglial activation and dopamine terminal loss in early Parkinson’s illness. Ann Neurol. 2005;57:168–75.

    CAS 

    Google Scholar
     

  • Kobylecki C, Counsell SJ, Cabanel N, Wächter T, Turkheimer FE, Eggert Ok, Oertel W, Brooks DJ, Gerhard A. Diffusion-weighted imaging and its relationship to microglial activation in parkinsonian syndromes. Parkinsonism Relat Disord. 2013;19:527–32.


    Google Scholar
     

  • Chauveau F, Van Camp N, Dolle F, Kuhnast B, Hinnen F, Damont A, Boutin H, James M, Kassiou M, Tavitian B. Comparative analysis of the translocator protein radioligands 11C-DPA-713, 18F-DPA-714, and 11C-PK11195 in a rat mannequin of acute neuroinflammation. J Nucl Med. 2009;50:468–76.

    CAS 

    Google Scholar
     

  • Zhang M-R, Maeda J, Furutsuka Ok, Yoshida Y, Ogawa M, Suhara T, Suzuki Ok. [18F]FMDAA1106 and [18F]FEDAA1106: two positron-Emitter labeled ligands for peripheral benzodiazepine receptor (PBR). Bioorg Med Chem Lett. 2003;13:201–4.

    CAS 

    Google Scholar
     

  • Zhang M-R, Kida T, Noguchi J, Furutsuka Ok, Maeda J, Suhara T, Suzuki Ok. [11C]DAA1106: radiosynthesis and in vivo binding to peripheral benzodiazepine receptors in mouse mind. Nucl Med Biol. 2003;30:513–9.

    CAS 

    Google Scholar
     

  • Maeda J, Suhara T, Zhang MR, Okauchi T, Yasuno F, Ikoma Y, Inaji M, Nagai Y, Takano A, Obayashi S, Suzuki Ok. Novel peripheral benzodiazepine receptor ligand [11C]DAA1106 for PET: an imaging device for glial cells within the mind. Synapse. 2004;52:283–91.

    CAS 

    Google Scholar
     

  • Yui J, Hatori A, Kawamura Ok, Yanamoto Ok, Yamasaki T, Ogawa M, Yoshida Y, Kumata Ok, Fujinaga M, Nengaki N, et al. Visualization of early infarction in rat mind after ischemia utilizing a translocator protein (18 okDa) PET ligand [11C]DAC with ultra-high particular exercise. Neuroimage. 2011;54:123–30.

    CAS 

    Google Scholar
     

  • Gulyas B, Toth M, Vas A, Shchukin E, Kostulas Ok, Hillert J, Halldin C. Visualising neuroinflammation in post-stroke sufferers: a comparative PET examine with the TSPO molecular imaging biomarkers [11C]PK11195 and [11C]vinpocetine. Curr Radiopharm. 2012;5:19–28.

    CAS 

    Google Scholar
     

  • Brody AL, Gehlbach D, Garcia LY, Enoki R, Hoh C, Vera D, Kotta KK, London ED, Okita Ok, Nurmi EL, et al. Effect of in a single day smoking abstinence on a marker for microglial activation: a [(11)C]DAA1106 positron emission tomography examine. Psychopharmacology. 2018;235:3525–34.

    CAS 

    Google Scholar
     

  • Best L, Ghadery C, Pavese N, Tai YF, Strafella AP. New and Old TSPO PET Radioligands for Imaging Brain Microglial Activation in Neurodegenerative Disease. Curr Neurol Neurosci Rep. 2019;19:24.


    Google Scholar
     

  • Zhang L, Hu Ok, Shao T, Hou L, Zhang S, Ye W, Josephson L, Meyer JH, Zhang MR, Vasdev N, et al. Recent developments on PET radiotracers for TSPO and their functions in neuroimaging. Acta pharmaceutica Sinica B. 2021;11:373–93.

    CAS 

    Google Scholar
     

  • Unterrainer M, Mahler C, Vomacka L, Lindner S, Havla J, Brendel M, Böning G, Ertl-Wagner B, Kümpfel T, Milenkovic VM, et al. TSPO PET with [18F]GE-180 sensitively detects focal neuroinflammation in sufferers with relapsing–remitting a number of sclerosis. Eur J Nucl Med Mol Imaging. 2018;45:1423–31.


    Google Scholar
     

  • Wadsworth H, Jones PA, Chau WF, Durrant C, Fouladi N, Passmore J, O’Shea D, Wynn D, Morisson-Iveson V, Ewan A, et al. [18F]GE-180: a novel fluorine-18 labelled PET tracer for imaging Translocator protein 18 okDa (TSPO). Bioorg Med Chem Lett. 2012;22:1308–13.

    CAS 

    Google Scholar
     

  • Alam MM, Lee J, Lee SY. Recent Progress within the Development of TSPO PET Ligands for Neuroinflammation Imaging in Neurological Diseases. Nucl Med Mol Imaging. 2017;51:283–96.

    CAS 

    Google Scholar
     

  • Ikawa M, Lohith TG, Shrestha S, Telu S, Zoghbi SS, Castellano S, Taliani S, Da Settimo F, Fujita M, Pike VW, Innis RB. 11C-ER176, a Radioligand for 18-kDa Translocator Protein, Has Adequate Sensitivity to Robustly Image All Three Affinity Genotypes in Human Brain. J Nucl Med. 2017;58:320–5.

    CAS 

    Google Scholar
     

  • Siméon FG, Lee J-H, Morse CL, Stukes I, Zoghbi SS, Manly LS, Liow J-S, Gladding RL, Dick RM, Yan X, et al. Synthesis and Screening in Mice of Fluorine-Containing PET Radioligands for TSPO: Discovery of a Promising 18F-Labeled Ligand. J Med Chem. 2021;64:16731–45.


    Google Scholar
     

  • Athauda D, Maclagan Ok, Skene SS, Bajwa-Joseph M, Letchford D, Chowdhury Ok, Hibbert S, Budnik N, Zampedri L, Dickson J, et al. Exenatide as soon as weekly versus placebo in Parkinson’s illness: a randomised, double-blind, placebo-controlled trial. Lancet. 2017;390:1664–75.

    CAS 

    Google Scholar
     

  • Tansey MG, Wallings RL, Houser MC, Herrick MK, Keating CE, Joers V. Inflammation and immune dysfunction in Parkinson illness. Nat Rev Immunol. 2022;22(11):657–73.

    CAS 

    Google Scholar
     

  • Fujimoto H, Fujita N, Hamamatsu Ok, Murakami T, Nakamoto Y, Saga T, Ishimori T, Shimizu Y, Watanabe H, Sano Ok, et al. First-in-Human Evaluation of Positron Emission Tomography/Computed Tomography With [(18)F]FB(ePEG12)12-Exendin-4: A Phase 1 Clinical Study Targeting GLP-1 Receptor Expression Cells in Pancreas. Front Endocrinol (Lausanne). 2021;12:717101.


    Google Scholar
     

  • Luo Y, Pan Q, Yao S, Yu M, Wu W, Xue H, Kiesewetter DO, Zhu Z, Li F, Zhao Y, Chen X. Glucagon-Like Peptide-1 Receptor PET/CT with 68Ga-NOTA-Exendin-4 for Detecting Localized Insulinoma: A Prospective Cohort Study. J Nucl Med. 2016;57:715–20.

    CAS 

    Google Scholar
     

  • Antwi Ok, Fani M, Nicolas G, Rottenburger C, Heye T, Reubi JC, Gloor B, Christ E, Wild D. Localization of Hidden Insulinomas with 68Ga-DOTA-Exendin-4 PET/CT: A Pilot Study. J Nucl Med. 2015;56:1075–8.

    CAS 

    Google Scholar
     

  • Liu Y, Liu S, Liu L, Gong X, Liu J, Sun L, Liu X, Wu L, Chen L, Wang L, et al. Fine Comparison of the Efficacy and Safety Between GB242 and Infliximab in Patients with Rheumatoid Arthritis: A Phase III Study. Rheumatol Ther. 2022;9:175–89.

    CAS 

    Google Scholar
     

  • Tobinick EL, Chen Ok, Chen X. Rapid intracerebroventricular supply of Cu-DOTA-etanercept after peripheral administration demonstrated by PET imaging. BMC Res Notes. 2009;2:28.


    Google Scholar
     

  • Colonna M. TREMs within the immune system and past. Nat Rev Immunol. 2003;3:445–53.

    CAS 

    Google Scholar
     

  • Guo Y, Wei X, Yan H, Qin Y, Yan S, Liu J, Zhao Y, Jiang F, Lou H. TREM2 deficiency aggravates α-synuclein-induced neurodegeneration and neuroinflammation in Parkinson’s illness fashions. Faseb j. 2019;33:12164–74.

    CAS 

    Google Scholar
     

  • Wilson EN, Swarovski MS, Linortner P, Shahid M, Zuckerman AJ, Wang Q, Channappa D, Minhas PS, Mhatre SD, Plowey ED, et al. Soluble TREM2 is elevated in Parkinson’s illness subgroups with elevated CSF tau. Brain. 2020;143:932–43.


    Google Scholar
     

  • Meier SR, Sehlin D, Hultqvist G, Syvänen S. Pinpointing Brain TREM2 Levels in Two Mouse Models of Alzheimer’s Disease. Mol Imaging Biol. 2021;23:665–75.

    CAS 

    Google Scholar
     

  • Sanjari Moghaddam H, Zare-Shahabadi A, Rahmani F, Rezaei N. Neurotransmission techniques in Parkinson’s illness. Rev Neurosci. 2017;28:509–36.


    Google Scholar
     

  • Tanimura A, Pancani T, Lim SAO, Tubert C, Melendez AE, Shen W, Surmeier DJ. Striatal cholinergic interneurons and Parkinson’s illness. Eur J Neurosci. 2018;47:1148–58.


    Google Scholar
     

  • Aosaki T, Miura M, Suzuki T, Nishimura Ok, Masuda M. Acetylcholine-dopamine steadiness speculation within the striatum: an replace. Geriatr Gerontol Int. 2010;10(Suppl 1):S148-157.


    Google Scholar
     

  • Maurice N, Liberge M, Jaouen F, Ztaou S, Hanini M, Camon J, Deisseroth Ok, Amalric M, Kerkerian-Le Goff L, Beurrier C. Striatal Cholinergic Interneurons Control Motor Behavior and Basal Ganglia Function in Experimental Parkinsonism. Cell Rep. 2015;13:657–66.

    CAS 

    Google Scholar
     

  • Pisani A, Bernardi G, Ding J, Surmeier DJ. Re-emergence of striatal cholinergic interneurons in motion issues. Trends Neurosci. 2007;30:545–53.

    CAS 

    Google Scholar
     

  • Ztaou S, Amalric M. Contribution of cholinergic interneurons to striatal pathophysiology in Parkinson’s illness. Neurochem Int. 2019;126:1–10.

    CAS 

    Google Scholar
     

  • DeMaagd G, Philip A. Parkinson’s Disease and Its Management: Part 3: Nondopaminergic and Nonpharmacological Treatment Options. P T. 2015;40:668–79.


    Google Scholar
     

  • Appenzeller O, Goss JE. Autonomic deficits in Parkinson’s syndrome. Arch Neurol. 1971;24:50–7.

    CAS 

    Google Scholar
     

  • Chen Z, Li G, Liu J. Autonomic dysfunction in Parkinson’s illness: Implications for pathophysiology, prognosis, and therapy. Neurobiol Dis. 2020;134: 104700.


    Google Scholar
     

  • Orimo S, Uchihara T, Nakamura A, Mori F, Kakita A, Wakabayashi Ok, Takahashi H. Axonal alpha-synuclein aggregates herald centripetal degeneration of cardiac sympathetic nerve in Parkinson’s illness. Brain. 2008;131:642–50.


    Google Scholar
     

  • Phillips RJ, Walter GC, Wilder SL, Baronowsky EA, Powley TL. Alpha-synuclein-immunopositive myenteric neurons and vagal preganglionic terminals: autonomic pathway implicated in Parkinson’s illness? Neuroscience. 2008;153:733–50.

    CAS 

    Google Scholar
     

  • Goldstein DS, Sharabi Y, Karp BI, Bentho O, Saleem A, Pacak Ok, Eisenhofer G. Cardiac sympathetic denervation previous motor indicators in Parkinson illness. Clin Auton Res. 2007;17:118–21.


    Google Scholar
     

  • Goldstein DS. Dysautonomia in Parkinson’s illness: neurocardiological abnormalities. Lancet Neurol. 2003;2:669–76.


    Google Scholar
     

  • Treglia G, Cason E, Stefanelli A, Cocciolillo F, Di Giuda D, Fagioli G, Giordano A. MIBG scintigraphy in differential prognosis of Parkinsonism: a meta-analysis. Clin Auton Res. 2012;22:43–55.


    Google Scholar
     

  • Beaulieu J-M, Espinoza S, Gainetdinov RR. Dopamine receptors – IUPHAR Review 13. Br J Pharmacol. 2015;172:1–23.

    CAS 

    Google Scholar
     

  • Seeman P, Niznik HB. Dopamine receptors and transporters in Parkinson’s illness and schizophrenia. FASEB J. 1990;4:2737–44.

    CAS 

    Google Scholar
     

  • Kaasinen V, Ruottinen HM, Någren Ok, Lehikoinen P, Oikonen V, Rinne JO. Upregulation of putaminal dopamine D2 receptors in early Parkinson’s illness: a comparative PET examine with [11C] raclopride and [11C]N-methylspiperone. J Nucl Med. 2000;41:65–70.

    CAS 

    Google Scholar
     

  • Farde L, Halldin C, Stone-Elander S, Sedvall G. PET evaluation of human dopamine receptor subtypes utilizing 11C-SCH 23390 and 11C-raclopride. Psychopharmacology. 1987;92(3):278–84.

    CAS 

    Google Scholar
     

  • Halldin C, Farde L, Barnett A, Sedvall G. Synthesis of carbon-11 labelled SCH 39166, a brand new selective dopamine D-1 receptor ligand, and preliminary PET investigations. Int J Rad Appl Instrum A. 1991;42:451–5.

    CAS 

    Google Scholar
     

  • Halldin C, Foged C, Chou Y-H, Karlsson P, Swahn C-G, Johan S, Sedvall G, Farde L. Carbon-11-NNC 112: A Radioligand for PET Examination of Striatal and Neocortical D<sub>1</sub>-Dopamine Receptors. J Nucl Med. 1998;39:2061.

    CAS 

    Google Scholar
     

  • Ekelund J, Slifstein M, Narendran R, Guillin O, Belani H, Guo N-N, Hwang Y, Hwang D-R, Abi-Dargham A, Laruelle M. In Vivo DA D1 Receptor Selectivity of NNC 112 and SCH 23390. Mol Imag Biol. 2007;9:117–25.


    Google Scholar
     

  • Tamagnan G, Barret O, Alagille D, Carroll V, Madonia J, Constantinescu C, SanDiego C, Papin C, Morley T, Russell D, et al. T156. In vivo characterization of the primary agonist dopamine D1 receptors PET imaging tracer [18F]MNI-968 in human. Schizophr Bull. 2018;44:1.


    Google Scholar
     

  • Ray NJ, Miyasaki JM, Zurowski M, Ko JH, Cho SS, Pellecchia G, Antonelli F, Houle S, Lang AE, Strafella AP. Extrastriatal dopaminergic abnormalities of DA homeostasis in Parkinson’s sufferers with medication-induced pathological playing: a [11C] FLB-457 and PET examine. Neurobiol Dis. 2012;48:519–25.

    CAS 

    Google Scholar
     

  • Nyberg S, Farde L, Eriksson L, Halldin C, Eriksson B. 5-HT2 and D2 dopamine receptor occupancy within the residing human mind A PET examine with risperidone. Psychopharmacology. 1993;110:265–72.

    CAS 

    Google Scholar
     

  • Chefer SI, Kimes AS, Matochik JA, Horti AG, Kurian V, Shumway D, Domino EF, London ED, Mukhin AG. Estimation of D2-like receptor occupancy by dopamine within the putamen of hemiparkinsonian Monkeys. Neuropsychopharmacology. 2008;33:270–8.

    CAS 

    Google Scholar
     

  • Sahin G, Thompson LH, Lavisse S, Ozgur M, Rbah-Vidal L, Dollé F, Hantraye P, Kirik D. Differential dopamine receptor occupancy underlies L-DOPA-induced dyskinesia in a rat mannequin of Parkinson’s illness. PLoS ONE. 2014;9:e90759.


    Google Scholar
     

  • de la Fuente-Fernández R, Sossi V, Huang Z, Furtado S, Lu JQ, Calne DB, Ruth TJ, Stoessl AJ. Levodopa-induced adjustments in synaptic dopamine ranges improve with development of Parkinson’s illness: implications for dyskinesias. Brain. 2004;127:2747–54.


    Google Scholar
     

  • Del Bello F, Giannella M, Giorgioni G, Piergentili A, Quaglia W. Receptor Ligands as Helping Hands to L-DOPA within the Treatment of Parkinson’s Disease. Biomolecules. 2019;9(4):142.


    Google Scholar
     

  • Clarke CE, Guttman M. Dopamine agonist monotherapy in Parkinson’s illness. The Lancet. 2002;360:1767–9.

    CAS 

    Google Scholar
     

  • Blandini F, Armentero MT. Dopamine receptor agonists for Parkinson’s illness. Expert Opin Investig Drugs. 2014;23:387–410.

    CAS 

    Google Scholar
     

  • Davie CA. A evaluation of Parkinson’s illness. Br Med Bull. 2008;86:109–27.

    CAS 

    Google Scholar
     

  • Abbott A. Levodopa: the story to this point. Nature. 2010;466:S6–7.

    CAS 

    Google Scholar
     

  • Guggenheim M. Dioxyphenylalanin, eine neue Aminosäure aus Vicia faba. Biological Chemistry. 1913;88:276–84.


    Google Scholar
     

  • Holtz P. Dopadecarboxylase. Naturwissenschaften. 1939;27:724–5.


    Google Scholar
     

  • Hornykiewicz O. A short historical past of levodopa. J Neurol. 2010;257:249–52.

    CAS 

    Google Scholar
     

  • Neurology TL. Building on 50 years of levodopa remedy. Lancet Neurol. 2016;15:1.


    Google Scholar
     

  • Senek M, Nielsen EI, Nyholm D. Levodopa-entacapone-carbidopa intestinal gel in Parkinson’s illness: A randomized crossover examine. Mov Disord. 2017;32:283–6.

    CAS 

    Google Scholar
     

  • Antonini A. Levodopa within the therapy of Parkinson&rsquo;s illness: an outdated drug nonetheless going sturdy. Clin Interv Aging. 2010;5:229.


    Google Scholar
     

  • Tambasco N, Romoli M, Calabresi P. Levodopa in Parkinson’s Disease: Current Status and Future Developments. Curr Neuropharmacol. 2018;16:1239–52.

    CAS 

    Google Scholar
     

  • Nutl JG, Fellman JH. Pharmacokinetics of Levodopa. Clin Neuropharmacol. 1984;7:35–50.


    Google Scholar
     

  • Hauser RA. Levodopa: Past, Present, and Future. Eur Neurol. 2009;62:1–8.

    CAS 

    Google Scholar
     

  • Cedarbaum JM. Clinical Pharmacokinetics of Anti-Parkinsonian Drugs. Clin Pharmacokinet. 1987;13:141–78.

    CAS 

    Google Scholar
     

  • Salat D, Tolosa E. Levodopa within the Treatment of Parkinson’s Disease: Current Status and New Developments. J Parkinson’s dis. 2013;3:255–69.

    CAS 

    Google Scholar
     

  • Lipp MM, Batycky R, Moore J, Leinonen M, Freed MI. Preclinical and medical evaluation of inhaled levodopa for OFF episodes in Parkinson’s illness. Sci Transl Med. 2016;8:360ra136.


    Google Scholar
     

  • Ellenbogen A, Stocchi F, Espay A, Poewe W, Oren S, Case R, Olanow CW. Impact of Subcutaneous Levodopa Infusion with ND0612 on Patient Reported Outcomes (4506). Neurology. 2020;94:4506.


    Google Scholar
     

  • Birnberg T, Smania G, Bjornsson M, Jonsson N, Case R, Oren S, Adar L, Karlsson M. Pharmacokinetic evaluation of levodopa and carbidopa following subcutaneous infusion: A inhabitants pharmacokinetics mannequin (2019). Neurology. 2019;2021:96.


    Google Scholar
     

  • Urso D, Chaudhuri KR, Qamar MA, Jenner P. Improving the Delivery of Levodopa in Parkinson’s Disease: A Review of Approved and Emerging Therapies. CNS Drugs. 2020;34:1149–63.

    CAS 

    Google Scholar
     

  • Müller T. Catechol-O-methyltransferase inhibitors in Parkinson’s illness. Drugs. 2015;75:157–74.


    Google Scholar
     

  • Ferreira JJ, Lees A, Rocha JF, Poewe W, Rascol O, Soares-da-Silva P. Opicapone as an adjunct to levodopa in sufferers with Parkinson’s illness and end-of-dose motor fluctuations: a randomised, double-blind, managed trial. Lancet Neurol. 2016;15:154–65.

    CAS 

    Google Scholar
     

  • Schapira AH. Monoamine oxidase B inhibitors for the therapy of Parkinson’s illness: a evaluation of symptomatic and potential disease-modifying results. CNS Drugs. 2011;25:1061–71.

    CAS 

    Google Scholar
     

  • Fox SH, Katzenschlager R, Lim S-Y, Ravina B, Seppi Ok, Coelho M, Poewe W, Rascol O, Goetz CG, Sampaio C. The Movement Disorder Society Evidence-Based Medicine Review Update: Treatments for the motor signs of Parkinson’s illness. Mov Disord. 2011;26:S2–41.


    Google Scholar
     

  • Group PS. A managed trial of rasagiline in early Parkinson illness: the TEMPO Study. Arch Neurol. 2002;59:1937–43.


    Google Scholar
     

  • Schapira AH, Fox SH, Hauser RA, Jankovic J, Jost WH, Kenney C, Kulisevsky J, Pahwa R, Poewe W, Anand R. Assessment of Safety and Efficacy of Safinamide as a Levodopa Adjunct in Patients With Parkinson Disease and Motor Fluctuations: A Randomized Clinical Trial. JAMA Neurol. 2017;74:216–24.


    Google Scholar
     

  • Ellis JM, Fell MJ. Current approaches to the therapy of Parkinson’s Disease. Bioorg Med Chem Lett. 2017;27:4247–55.

    CAS 

    Google Scholar
     

  • Bezard E, Brotchie JM, Gross CE. Pathophysiology of levodopa-induced dyskinesia: Potential for brand new therapies. Nat Rev Neurosci. 2001;2:577–88.

    CAS 

    Google Scholar
     

  • Lee J, Zhu W-M, Stanic D, Finkelstein DI, Horne MH, Henderson J, Lawrence AJ, O’Connor L, Tomas D, Drago J, Horne MK. Sprouting of dopamine terminals and altered dopamine launch and uptake in Parkinsonian dyskinaesia. Brain. 2008;131:1574–87.


    Google Scholar
     

  • Olanow CW, Obeso JA, Stocchi F. Continuous dopamine-receptor therapy of Parkinson’s illness: scientific rationale and medical implications. Lancet Neurol. 2006;5:677–87.

    CAS 

    Google Scholar
     

  • Antonini A, Fung VS, Boyd JT, Slevin JT, Hall C, Chatamra Ok, Eaton S, Benesh JA. Effect of levodopa-carbidopa intestinal gel on dyskinesia in superior Parkinson’s illness sufferers. Mov Disord. 2016;31:530–7.

    CAS 

    Google Scholar
     

  • Poewe W, Antonini A. Novel formulations and modes of supply of levodopa. Mov Disord. 2015;30:114–20.

    CAS 

    Google Scholar
     

  • Firnau G, Nahmias C, Garnett S. The preparation of [18F]5-fluoro-DOPA with reactor-produced fluorine-18. Int J Appl Radiat Isot. 1973;24:182–4.

    CAS 

    Google Scholar
     

  • Garnett S, Firnau G, Nahmias C, Chirakal R. Striatal dopamine metabolism in residing monkeys examined by positron emission tomography. Brain Res. 1983;280:169–71.

    CAS 

    Google Scholar
     

  • Nanni C, Fanti S, Rubello D. 18F-DOPA PET and PET/CT. J Nucl Med. 2007;48:1577–9.


    Google Scholar
     

  • Ribeiro M-J, Vidailhet M, Loc’h C, Dupel C, Nguyen JP, Ponchant M, Dollé F, Peschanski M, Hantraye P, Cesaro P, et al. Dopaminergic Function and Dopamine Transporter Binding Assessed With Positron Emission Tomography in Parkinson Disease. Arch Neurol. 2002;59:580–6.


    Google Scholar
     

  • Weeks RA, Brooks DJ. Positron emission tomography and central neurotransmitter techniques in motion issues. Fundam Clin Pharmacol. 1994;8:503–17.

    CAS 

    Google Scholar
     

  • Garnett ES, Firnau G, Nahmias C. Dopamine visualized within the basal ganglia of residing man. Nature. 1983;305:137–8.

    CAS 

    Google Scholar
     

  • Piel M, Vernaleken I, Rosch F. Positron emission tomography in CNS drug discovery and drug monitoring. J Med Chem. 2014;57:9232–58.

    CAS 

    Google Scholar
     

  • Dhawan V, Niethammer M, Lesser M, Pappas Ok, Hellman M, Fitzpatrick T, Quartarolo L, Bjelke D, Eidelberg D, Chlay T. Prospective FDOPA PET imaging examine in human PD :our closing step in direction of NDA approval. J Nucl Med. 2020;61:1565.


    Google Scholar
     

  • Dannals RF, Neumeyer JL, Milius RA, Ravert HT, Wilson AA, Wagner HN Jr. Synthesis of a radiotracer for learning dopamine uptake websites in vivo utilizing PET: 2β-carbomethoxy-3β-(4-fluorophenyl)-[N-11C-methyl]tropane ([11C]CFT or [11C]WIN-35,428). J Labelled Compd Radiopharm. 1993;33:147–52.

    CAS 

    Google Scholar
     

  • Rinne JO, Bergman J, Ruottinen H, Haaparanta M, Eronen E, Oikonen V, Sonninen P, Solin O. Striatal uptake of a novel PET ligand, [18F]beta-CFT, is decreased in early Parkinson’s illness. Synapse. 1999;31:119–24.

    CAS 

    Google Scholar
     

  • Appel L, Jonasson M, Danfors T, Nyholm D, Askmark H, Lubberink M, Sörensen J. Use of 11C-PE2I PET in differential prognosis of parkinsonian issues. J Nucl Med. 2015;56:234–42.


    Google Scholar
     

  • Fischman AJ, Bonab AA, Babich JW, Livni E, Alpert NM, Meltzer PC, Madras BK. [(11)C, (127)I] Altropane: a extremely selective ligand for PET imaging of dopamine transporter websites. Synapse. 2001;39:332–42.

    CAS 

    Google Scholar
     

  • Seifert KD, Wiener JI. The influence of DaTscan on the prognosis and administration of motion issues: A retrospective examine. Am J Neurodegener Dis. 2013;2:29–34.


    Google Scholar
     

  • Frost JJ, Rosier AJ, Reich SG, Smith JS, Ehlers MD, Snyder SH, Ravert HT, Dannals RF. Positron emission tomographic imaging of the dopamine transporter with 11C-WIN 35,428 reveals marked declines in gentle Parkinson’s illness. Ann Neurol. 1993;34:423–31.

    CAS 

    Google Scholar
     

  • Piccini PP. Dopamine transporter: Basic elements and neuroimaging. Mov Disord. 2003;18:S3–8.


    Google Scholar
     

  • Brooks DJ. Molecular imaging of dopamine transporters. Ageing Res Rev. 2016;30:114–21.

    CAS 

    Google Scholar
     

  • Peter D, Liu Y, Sternini C, De Giorgio R, Brecha N, Edwards R. Differential expression of two vesicular monoamine transporters. J Neurosci. 1995;15:6179–88.

    CAS 

    Google Scholar
     

  • Vander Borght TM, Sima AAF, Kilbourn MR, Desmond TJ, Kuhl DE, Frey KA. [3H]methoxytetrabenazine: A excessive particular exercise ligand for estimating monoaminergic neuronal integrity. Neuroscience. 1995;68:955–62.

    CAS 

    Google Scholar
     

  • Frey KA, Koeppe RA, Kilbourn MR, Vander Borght TM, Albin RL, Gilman S, Kuhl DE. Presynaptic monoaminergic vesicles in Parkinson’s illness and regular growing old. Ann Neurol. 1996;40:873–84.

    CAS 

    Google Scholar
     

  • Okamura N, Villemagne VL, Drago J, Pejoska S, Dhamija RK, Mulligan RS, Ellis JR, Ackermann U, O’Keefe G, Jones G, et al. In vivo measurement of vesicular monoamine transporter kind 2 density in Parkinson illness with (18)F-AV-133. J Nucl Med. 2010;51:223–8.


    Google Scholar
     

  • Hsiao IT, Weng YH, Hsieh CJ, Lin WY, Wey SP, Kung MP, Yen TC, Lu CS, Lin KJ. Correlation of Parkinson illness severity and 18F-DTBZ positron emission tomography. JAMA Neurol. 2014;71:758–66.


    Google Scholar
     

  • Chaudhuri KR, Healy DG, Schapira AH. Non-motor signs of Parkinson’s illness: prognosis and administration. Lancet Neurol. 2006;5:235–45.


    Google Scholar
     

  • Politis M, Wu Ok, Loane C, Kiferle L, Molloy S, Brooks DJ, Piccini P. Staging of serotonergic dysfunction in Parkinson’s illness: an in vivo 11C-DASB PET examine. Neurobiol Dis. 2010;40:216–21.

    CAS 

    Google Scholar
     

  • Doder M, Rabiner EA, Turjanski N, Lees AJ, Brooks DJ. examine CWP: Tremor in Parkinson’s illness and serotonergic dysfunction: an 11C-WAY 100635 PET examine. Neurology. 2003;60:601–5.

    CAS 

    Google Scholar
     

  • Fu H, Rong J, Chen Z, Zhou J, Collier T, Liang SH. Positron Emission Tomography (PET) Imaging Tracers for Serotonin Receptors. J Med Chem. 2022;65:10755–808.

    CAS 

    Google Scholar
     

  • Wilson H, Dervenoulas G, Pagano G, Koros C, Yousaf T, Picillo M, Polychronis S, Simitsi A, Giordano B, Chappell Z, et al. Serotonergic pathology and illness burden within the premotor and motor part of A53T alpha-synuclein parkinsonism: a cross-sectional examine. Lancet Neurol. 2019;18:748–59.

    CAS 

    Google Scholar
     

  • Sahli ZT, Tarazi FI. Pimavanserin: novel pharmacotherapy for Parkinson’s illness psychosis. Expert Opin Drug Discov. 2018;13:103–10.

    CAS 

    Google Scholar
     

  • Johnson KA, Conn PJ, Niswender CM. Glutamate receptors as therapeutic targets for Parkinson’s illness. CNS Neurol Disord: Drug Targets. 2009;8:475–91.

    CAS 

    Google Scholar
     

  • Crupi R, Impellizzeri D, Cuzzocrea S. Role of Metabotropic Glutamate Receptors in Neurological Disorders. Front Mol Neurosci. 2019;12:20.

    CAS 

    Google Scholar
     

  • Karcz-Kubicha M, Lorenz B, Danysz W. GlycineB antagonists and partial agonists in rodent fashions of Parkinson’s illness–comparability with uncompetitive N-methyl-D-aspartate receptor antagonist. Neuropharmacology. 1999;38:109–19.

    CAS 

    Google Scholar
     

  • Ossowska Ok. The position of excitatory amino acids in experimental fashions of Parkinson’s illness. J Neural Transm Park Dis Dement Sect. 1994;8:39–71.

    CAS 

    Google Scholar
     

  • Marino MJ, Valenti O, Conn PJ. Glutamate receptors and Parkinson’s illness: alternatives for intervention. Drugs Aging. 2003;20:377–97.

    CAS 

    Google Scholar
     

  • Marin C, Papa S, Engber TM, Bonastre M, Tolosa E, Chase TN. MK-801 prevents levodopa-induced motor response alterations in parkinsonian rats. Brain Res. 1996;736:202–5.

    CAS 

    Google Scholar
     

  • Sawada H, Oeda T, Kuno S, Nomoto M, Yamamoto Ok, Yamamoto M, Hisanaga Ok, Kawamura T, Amantadine Study G. Amantadine for dyskinesias in Parkinson’s illness: a randomized managed trial. PLoS ONE. 2010;5:e15298.

    CAS 

    Google Scholar
     

  • Paoletti P, Neyton J. NMDA receptor subunits: perform and pharmacology. Curr Opin Pharmacol. 2007;7:39–47.

    CAS 

    Google Scholar
     

  • Nash JE, Fox SH, Henry B, Hill MP, Peggs D, McGuire S, Maneuf Y, Hille C, Brotchie JM, Crossman AR. Antiparkinsonian actions of ifenprodil within the MPTP-lesioned marmoset mannequin of Parkinson’s illness. Exp Neurol. 2000;165:136–42.

    CAS 

    Google Scholar
     

  • Steece-Collier Ok, Chambers LK, Jaw-Tsai SS, Menniti FS, Greenamyre JT. Antiparkinsonian actions of CP-101,606, an antagonist of NR2B subunit-containing N-methyl-d-aspartate receptors. Exp Neurol. 2000;163:239–43.

    CAS 

    Google Scholar
     

  • Smart Ok, Zheng MQ, Ahmed H, Fang H, Xu Y, Cai L, Holden D, Kapinos M, Haider A, Felchner Z, et al. Comparison of three novel radiotracers for GluN2B-containing NMDA receptors in non-human primates: (R)-[(11)C]NR2B-Me, (R)-[(18)F]of-Me-NB1, and (S)-[(18)F]of-NB1. J Cereb Blood Flow Metab. 2022;42:1398–409.

    CAS 

    Google Scholar
     

  • Ahmed H, Zheng MQ, Smart Ok, Fang H, Zhang L, Emery PR, Gao H, Ropchan J, Haider A, Tamagnan G, et al. Evaluation of (rac)-, (R)- and (S)-(18)F-OF-NB1 for imaging GluN2B subunit-containing N-methyl-D-aspartate receptors in non-human primates. J Nucl Med. 2022;63(12):1912–8.

    CAS 

    Google Scholar
     

  • Zheng M, Ahmed H, Smart Ok, Xu Y, Holden D, Kapinos M, Felchner Z, Haider A, Tamagnan G, Carson RE, et al. Characterization in nonhuman primates of (R)-[(18)F]OF-Me-NB1 and (S)-[(18)F]OF-Me-NB1 for imaging the GluN2B subunits of the NMDA receptor. Eur J Nucl Med Mol Imaging. 2022;49:2153–62.

    CAS 

    Google Scholar
     

  • Rischka L, Vraka C, Pichler V, Rasul S, Nics L, Gryglewski G, Handschuh P, Murgaš M, Godbersen GM, Silberbauer LR, et al. First-in-Humans Brain PET Imaging of the GluN2B-Containing N-methyl-d-aspartate Receptor with (R)-(11)C-Me-NB1. J Nucl Med. 2022;63:936–41.

    CAS 

    Google Scholar
     

  • Ahmed H, Wallimann R, Haider A, Hosseini V, Gruber S, Robledo M, Nguyen TAN, Herde AM, Iten I, Keller C, et al. Preclinical Development of (18)F-OF-NB1 for Imaging GluN2B-Containing N-Methyl-d-Aspartate Receptors and Its Utility as a Biomarker for Amyotrophic Lateral Sclerosis. J Nucl Med. 2021;62:259–65.

    CAS 

    Google Scholar
     

  • Ahmed H, Haider A, Varisco J, Stanković M, Wallimann R, Gruber S, Iten I, Häne S, Müller Herde A, Keller C, et al. Structure-Affinity Relationships of two,3,4,5-Tetrahydro-1H-3-benzazepine and 6,7,8,9-Tetrahydro-5H-benzo[7]annulen-7-amine Analogues and the Discovery of a Radiofluorinated 2,3,4,5-Tetrahydro-1H-3-benzazepine Congener for Imaging GluN2B Subunit-Containing N-Methyl-d-aspartate Receptors. J Med Chem. 2019;62:9450–70.

    CAS 

    Google Scholar
     

  • Haider A, Iten I, Ahmed H, Müller Herder A, Gruber S, Krämer SD, Keller C, Schibli R, Wünsch B, Mu L, Ametamey SM. Identification and Preclinical Evaluation of a Radiofluorinated Benzazepine Derivative for Imaging the GluN2B Subunit of the Ionotropic NMDA Receptor. J Nucl Med. 2018;60:259–66.


    Google Scholar
     

  • Szermerski M, Börgel F, Schepmann D, Haider A, Betzel T, Ametamey SM, Wünsch B. Fluorinated GluN2B Receptor Antagonists with a 3-Benzazepine Scaffold Designed for PET Studies. ChemMedChem. 2018;13:1058–68.

    CAS 

    Google Scholar
     

  • Krämer SD, Betzel T, Mu L, Haider A, Herde AM, Boninsegni AK, Keller C, Szermerski M, Schibli R, Wünsch B, Ametamey SM. Evaluation of (11)C-Me-NB1 as a Potential PET Radioligand for Measuring GluN2B-Containing NMDA Receptors, Drug Occupancy, and Receptor Cross Talk. J Nucl Med. 2018;59:698–703.


    Google Scholar
     

  • Goldstein DS, Holmes C, Cannon RO, Eisenhofer G, Kopin IJ. Sympathetic Cardioneuropathy in Dysautonomias. N Engl J Med. 1997;336:696–702.

    CAS 

    Google Scholar
     

  • Sakakibara R, Tateno F, Kishi M, Tsuyusaki Y, Terada H, Inaoka T. MIBG myocardial scintigraphy in pre-motor Parkinson’s illness: A evaluation. Parkinsonism Relat Disord. 2014;20:267–73.


    Google Scholar
     

  • De Pablo-Fernandez E, Tur C, Revesz T, Lees AJ, Holton JL, Warner TT. Association of Autonomic Dysfunction With Disease Progression and Survival in Parkinson Disease. JAMA Neurol. 2017;74:970–6.


    Google Scholar
     

  • De Pablo-Fernandez E, Warner TT. Autonomic Dysfunction in Parkinson’s Disease: The Hidden Game Changer? Mov Disord. 2018;33:1028.


    Google Scholar
     

  • Hauser RA, Heritier S, Rowse GJ, Hewitt LA, Isaacson SH. Droxidopa and Reduced Falls in a Trial of Parkinson Disease Patients With Neurogenic Orthostatic Hypotension. Clin Neuropharmacol. 2016;39:220–6.

    CAS 

    Google Scholar
     

  • Braune S, Reinhardt M, Schnitzer R, Riedel A, Lücking CH. Cardiac uptake of [123I]MIBG separates Parkinson’s illness from a number of system atrophy. Neurology. 1999;53:1020–5.

    CAS 

    Google Scholar
     

  • Rascol O, Schelosky L. 123I-metaiodobenzylguanidine scintigraphy in Parkinson’s illness and associated issues. Mov Disord. 2009;24(Suppl 2):S732-741.


    Google Scholar
     

  • - Advertisement -
    Pet News 2Day
    Pet News 2Dayhttps://petnews2day.com
    About the editor Hey there! I'm proud to be the editor of Pet News 2Day. With a lifetime of experience and a genuine love for animals, I bring a wealth of knowledge and passion to my role. Experience and Expertise Animals have always been a central part of my life. I'm not only the owner of a top-notch dog grooming business in, but I also have a diverse and happy family of my own. We have five adorable dogs, six charming cats, a wise old tortoise, four adorable guinea pigs, two bouncy rabbits, and even a lively flock of chickens. Needless to say, my home is a haven for animal love! Credibility What sets me apart as a credible editor is my hands-on experience and dedication. Through running my grooming business, I've developed a deep understanding of various dog breeds and their needs. I take pride in delivering exceptional grooming services and ensuring each furry client feels comfortable and cared for. Commitment to Animal Welfare But my passion extends beyond my business. Fostering dogs until they find their forever homes is something I'm truly committed to. It's an incredibly rewarding experience, knowing that I'm making a difference in their lives. Additionally, I've volunteered at animal rescue centers across the globe, helping animals in need and gaining a global perspective on animal welfare. Trusted Source I believe that my diverse experiences, from running a successful grooming business to fostering and volunteering, make me a credible editor in the field of pet journalism. I strive to provide accurate and informative content, sharing insights into pet ownership, behavior, and care. My genuine love for animals drives me to be a trusted source for pet-related information, and I'm honored to share my knowledge and passion with readers like you.
    -Advertisement-

    Latest Articles

    -Advertisement-

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here
    Captcha verification failed!
    CAPTCHA user score failed. Please contact us!