Tuesday, May 21, 2024
Tuesday, May 21, 2024
HomePet Industry NewsPet Travel NewsNeuroimaging genetics approaches to establish new biomarkers for the early analysis of...

Neuroimaging genetics approaches to establish new biomarkers for the early analysis of autism spectrum dysfunction

Date:

Related stories

-Advertisement-spot_img
-- Advertisment --
- Advertisement -
  • Autism spectrum issues. https://www.who.int/news-room/fact-sheets/detail/autism-spectrum-disorders#:~:text=Epidemiology,figures%20that%20are%20substantially%20higher., 2021.

  • Data & Statistics on Autism Spectrum Disorder. https://www.cdc.gov/ncbddd/autism/data.html, 2021.

  • Autism Spectrum Disorder (ASD). https://www.nimh.nih.gov/health/statistics/autism-spectrum-disorder-asd, 2022.

  • Casanova MF, Frye RE, Gillberg C, Casanova EL. Editorial: comorbidity and autism spectrum dysfunction. Front Psychiatry. 2020;11:617395.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pugsley Ok, Scherer SW, Bellgrove MA, Hawi Z. Environmental exposures related to elevated danger for autism spectrum dysfunction might increase the burden of deleterious de novo mutations amongst probands. Mol Psychiatry. 2022;27:710–30.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Grove J, Ripke S, Als TD, Mattheisen M, Walters RK, Won H, et al. Identification of frequent genetic danger variants for autism spectrum dysfunction. Nat Genet. 2019;51:431–44.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eyring KW, Geschwind DH. Three a long time of ASD genetics: building a basis for neurobiological understanding and remedy. Hum Mol Genet. 2021;30:R236–44.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Geschwind DH. Autism: many genes, frequent pathways? Cell. 2008;135:391–5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao R, Penzes P. Common mechanisms of excitatory and inhibitory imbalance in schizophrenia and autism spectrum issues. Curr Mol Med. 2015;15:146–67.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pan Y-H, Wu N, Yuan X-B. Toward a greater understanding of neuronal migration deficits in autism spectrum issues. Front Cell Dev Biol. 2019;7:205–5.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang H. Synaptic dysregulation in autism spectrum issues. J Neurosci Res. 2020;98:2111–4.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dajani DR, Uddin LQ. Local mind connectivity throughout improvement in autism spectrum dysfunction: a cross-sectional investigation. Autism Res. 2016;9:43–54.

    Article 
    PubMed 

    Google Scholar
     

  • Kumar S, Reynolds Ok, Ji Y, Gu R, Rai S, Zhou CJ. Impaired neurodevelopmental pathways in autism spectrum dysfunction: a evaluate of signaling mechanisms and crosstalk. J Neurodevelop Disord. 2019;11:10.

    Article 
    CAS 

    Google Scholar
     

  • Lin Y-C, Frei JA, Kilander MBC, Shen W, Blatt GJ. A subset of autism-associated genes regulate the structural stability of neurons. Front Cell Neurosci. 2016;10:263.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hashem S, Nisar S, Bhat AA, Yadav SK, Azeem MW, Bagga P, et al. Genetics of structural and practical mind modifications in autism spectrum dysfunction. Transl Psychiatry. 2020;10:229–9.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bigos KL, Hariri AR. Neuroimaging: applied sciences on the interface of genes, mind, and habits. Neuroimaging Clin N. Am. 2007;17:459–viii.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Klein M, van Donkelaar M, Verhoef E, Franke B. Imaging genetics in neurodevelopmental psychopathology. Am J Med Genet B Neuropsychiatr Genet. 2017;174:485–537.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Duverger O, Morasso MI. Role of homeobox genes within the patterning, specification, and differentiation of ectodermal appendages in mammals. J Cell Physiol. 2008;216:337–46.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rossel M, Capecchi MR. Mice mutant for each Hoxa1 and Hoxb1 present intensive transforming of the hindbrain and defects in craniofacial improvement. Development. 1999;126:5027–40.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Conciatori M, Stodgell CJ, Hyman SL, O’Bara M, Militerni R, Bravaccio C, et al. Association between the HOXA1 A218G polymorphism and elevated head circumference in sufferers with autism. Biol Psychiatry. 2004;55:413–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Muscarella LA, Guarnieri V, Sacco R, Militerni R, Bravaccio C, Trillo S, et al. HOXA1 gene variants affect head progress charges in people. Am J Med Genet B Neuropsychiatr Genet. 2007;144b:388–90.

    Article 
    PubMed 

    Google Scholar
     

  • Muscarella LA, Guarnieri V, Sacco R, Curatolo P, Manzi B, Alessandrelli R, et al. Candidate gene examine of HOXB1 in autism spectrum dysfunction. Mol Autism. 2010;1:9.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cummings Ok, Watkins A, Jones C, Dias R, Welham A. Behavioural and psychological options of PTEN mutations: a scientific evaluate of the literature and meta-analysis of the prevalence of autism spectrum dysfunction traits. J Neurodevelop Disord. 2022;14:1.

    Article 

    Google Scholar
     

  • Butler MG, Dasouki MJ, Zhou XP, Talebizadeh Z, Brown M, Takahashi TN, et al. Subset of people with autism spectrum issues and excessive macrocephaly related to germline PTEN tumour suppressor gene mutations. J Med Genet. 2005;42:318–21.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Buxbaum JD, Cai G, Chaste P, Nygren G, Goldsmith J, Reichert J, et al. Mutation screening of the PTEN gene in sufferers with autism spectrum issues and macrocephaly. Am J Med Genet B Neuropsychiatr Genet. 2007;144b:484–91.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Frewer V, Gilchrist CP, Collins SE, Williams Ok, Seal ML, Leventer RJ, et al. A scientific evaluate of mind MRI findings in monogenic issues strongly related to autism spectrum dysfunction. J Child Psychol Psychiatry. 2021;62:1339–52.

    Article 
    PubMed 

    Google Scholar
     

  • Tan GCY, Doke TF, Ashburner J, Wood NW, Frackowiak RSJ. Normal variation in fronto-occipital circuitry and cerebellar construction with an autism-associated polymorphism of CNTNAP2. Neuroimage. 2010;53:1030–42.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Agarwala S, Ramachandra NB. Role of CNTNAP2 in autism manifestation outlines the regulation of signaling between neurons on the synapse. Egypt J Med Hum Genet. 2021;22:22.

    Article 

    Google Scholar
     

  • Chien Y-L, Chen Y-C, Gau SS-F. Altered cingulate buildings and the associations with social consciousness deficits and CNTNAP2 gene in autism spectrum dysfunction. NeuroImage: Clin. 2021;31:102729.

    Article 
    PubMed 

    Google Scholar
     

  • Peng Y, Huentelman M, Smith C, Qiu S. MET receptor tyrosine kinase as an autism genetic danger issue. Int Rev Neurobiol. 2013;113:135–65.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Campbell DB, Sutcliffe JS, Ebert PJ, Militerni R, Bravaccio C, Trillo S, et al. A genetic variant that disrupts MET transcription is related to autism. Proc Natl Acad Sci USA. 2006;103:16834–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rudie JD, Hernandez LM, Brown JA, Beck-Pancer D, Colich NL, Gorrindo P, et al. Autism-associated promoter variant in MET impacts practical and structural mind networks. Neuron. 2012;75:904–15.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu Q, Liu Y-Y, Wang X, Tan G-H, Li H-P, Hulbert SW, et al. Autism-associated CHD8 deficiency impairs axon improvement and migration of cortical neurons. Mol Autism. 2018;9:65.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alotaibi M, Ramzan Ok. A de novo variant of CHD8 in a affected person with autism spectrum dysfunction. Discoveries (Craiova). 2020;8:e107–7.

    Article 
    PubMed 

    Google Scholar
     

  • Steadman PE, Ellegood J, Szulc KU, Turnbull DH, Joyner AL, Henkelman RM, et al. Genetic results on cerebellar construction throughout mouse fashions of autism utilizing a magnetic resonance imaging atlas. Autism Res: Off J Int Soc Autism Res. 2014;7:124–37.

    Article 

    Google Scholar
     

  • Wen Z, Cheng T-L, Li G-Z, Sun S-B, Yu S-Y, Zhang Y, et al. Identification of autism-related MECP2 mutations by whole-exome sequencing and practical validation. Mol Autism. 2017;8:43.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schoen M, Asoglu H, Bauer HF, Müller HP, Abaei A, Sauer AK, et al. Shank3 transgenic and prenatal zinc-deficient autism mouse fashions present convergent and particular person alterations of mind buildings in MRI. Front Neural Circuits. 2019;13:6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pagani M, Bertero A, Liska A, Galbusera A, Sabbioni M, Barsotti N, et al. Deletion of autism danger gene Shank3 disrupts prefrontal connectivity. J Neurosci. 2019;39:5299.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lam M, Moslem M, Bryois J, Pronk RJ, Uhlin E, Ellström ID, et al. Single cell evaluation of autism affected person with bi-allelic NRXN1-alpha deletion reveals skewed destiny selection in neural progenitors and impaired neuronal performance. Exp Cell Res. 2019;383:111469.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pervolaraki E, Tyson AL, Pibiri F, Poulter SL, Reichelt AC, Rodgers RJ, et al. The within-subject utility of diffusion tensor MRI and CLARITY reveals mind structural modifications in Nrxn2 deletion mice. Mol Autism. 2019;10:8.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liska A, Bertero A, Gomolka R, Sabbioni M, Galbusera A, Barsotti N, et al. Homozygous lack of autism-risk gene CNTNAP2 ends in decreased native and long-range prefrontal practical connectivity. Cereb Cortex. 2018;28:1141–53.

    Article 
    PubMed 

    Google Scholar
     

  • de Jong JO, Llapashtica C, Genestine M, Strauss Ok, Provenzano F, Sun Y, et al. Cortical overgrowth in a preclinical forebrain organoid mannequin of CNTNAP2-associated autism spectrum dysfunction. Nat Commun. 2021;12:4087.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jin D, Liu H-X, Hirai H, Torashima T, Nagai T, Lopatina O, et al. CD38 is vital for social behaviour by regulating oxytocin secretion. Nature. 2007;446:41–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Higashida H, Yokoyama S, Huang JJ, Liu L, Ma WJ, Akther S, et al. Social reminiscence, amnesia, and autism: mind oxytocin secretion is regulated by NAD+ metabolites and single nucleotide polymorphisms of CD38. Neurochem Int. 2012;61:828–38.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • LoParo D, Waldman ID. The oxytocin receptor gene (OXTR) is related to autism spectrum dysfunction: a meta-analysis. Mol Psychiatry. 2015;20:640–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Uzefovsky F, Bethlehem RAI, Shamay-Tsoory S, Ruigrok A, Holt R, Spencer M, et al. The oxytocin receptor gene predicts mind exercise throughout an emotion recognition process in autism. Mol Autism. 2019;10:12.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Oliveira Pereira Ribeiro L, Vargas-Pinilla P, Kappel DB, Longo D, Ranzan J, Becker MM, et al. Evidence for affiliation between OXTR gene and ASD scientific phenotypes. J Mol Neurosci. 2018;65:213–21.

    Article 
    PubMed 

    Google Scholar
     

  • Hernandez LM, Lawrence KE, Padgaonkar NT, Inada M, Hoekstra JN, Lowe JK, et al. Imaging-genetics of intercourse variations in ASD: distinct results of OXTR variants on mind connectivity. Transl Psychiatry. 2020;10:82.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meyer-Lindenberg A, Kolachana B, Gold B, Olsh A, Nicodemus KK, Mattay V, et al. Genetic variants in AVPR1A linked to autism predict amygdala activation and persona traits in wholesome people. Mol Psychiatry. 2009;14:968–75.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang Y, Zhu D, Zhang P, Li W, Qin W, Liu F, et al. Neural mechanisms of AVPR1A RS3-RS1 haplotypes that influence verbal studying and reminiscence. Neuroimage. 2020;222:117283.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang SY, Kim SA, Hur GM, Park M, Park J-E, Yoo HJ. Replicative genetic affiliation examine between practical polymorphisms in AVPR1A and social habits scales of autism spectrum dysfunction within the Korean inhabitants. Mol Autism. 2017;8:44.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bosch C, Muhaisen A, Pujadas L, Soriano E, Martínez A. Reelin exerts structural, biochemical and transcriptional regulation over presynaptic and postsynaptic components within the grownup hippocampus. Front Cell Neurosci. 2016;10:138–8.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fatemi SH. The function of Reelin in pathology of autism. Mol Psychiatry. 2002;7:919–20.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lammert DB, Howell BW. RELN mutations in autism spectrum dysfunction. Front Cell Neurosci. 2016;10:84.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lammert DB, Middleton FA, Pan J, Olson EC, Howell BW. The de novo autism spectrum dysfunction RELN R2290C mutation reduces Reelin secretion and will increase protein disulfide isomerase expression. J Neurochem. 2017;142:89–102.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cuchillo-Ibáñez I, Andreo-Lillo P, Pastor-Ferrándiz L, Carratalá-Marco F, Sáez-Valero J. Elevated plasma reelin ranges in youngsters with autism. Front Psychiatry. 2020;11:242.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang T-N, Yen T-L, Qiu LR, Chuang H-C, Lerch JP, Hsueh Y-P. Haploinsufficiency of autism causative gene Tbr1 impairs olfactory discrimination and neuronal activation of the olfactory system in mice. Mol Autism. 2019;10:5.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang TN, Chuang HC, Chou WH, Chen CY, Wang HF, Chou SJ, et al. Tbr1 haploinsufficiency impairs amygdalar axonal projections and ends in cognitive abnormality. Nat Neurosci. 2014;17:240–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sapey-Triomphe L-A, Reversat J, Lesca G, Chatron N, Bussa M, Mazoyer S, et al. A de novo frameshift pathogenic variant in TBR1 recognized in autism with out mental incapacity. Hum Genomics. 2020;14:32–32.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yook C, Kim Ok, Kim D, Kang H, Kim S-G, Kim E, et al. A TBR1-K228E mutation induces Tbr1 upregulation, altered cortical distribution of interneurons, elevated inhibitory synaptic transmission, and autistic-like behavioral deficits in mice. Front Mol Neurosci. 2019;12:241.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Deriziotis P, O’Roak BJ, Graham SA, Estruch SB, Dimitropoulou D, Bernier RA, et al. De novo TBR1 mutations in sporadic autism disrupt protein features. Nat Commun. 2014;5:4954–4.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang R, Walder-Christensen Kathryn Ok, Kim N, Wu D, Lorenzo Damaris N, Badea A, et al. ANK2 autism mutation concentrating on large ankyrin-B promotes axon branching and ectopic connectivity. Proc Natl Acad Sci. 2019;116:15262–71.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kawano S, Baba M, Fukushima H, Miura D, Hashimoto H, Nakazawa T. Autism-associated ANK2 regulates embryonic neurodevelopment. Biochem Biophys Res Commun. 2022;605:45–50.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lai ESK, Nakayama H, Miyazaki T, Nakazawa T, Tabuchi Ok, Hashimoto Ok, et al. An autism-associated neuroligin-3 mutation impacts developmental synapse elimination within the cerebellum. Front Neural Circuits. 2021;15:676891.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Burrows EL, Laskaris L, Koyama L, Churilov L, Bornstein JC, Hill-Yardin EL, et al. A neuroligin-3 mutation implicated in autism causes irregular aggression and will increase repetitive habits in mice. Mol Autism. 2015;6:62.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kumar M, Duda JT, Hwang W-T, Kenworthy C, Ittyerah R, Pickup S, et al. High decision magnetic resonance imaging for characterization of the neuroligin-3 knock-in mouse mannequin related to autism spectrum dysfunction. PLOS ONE. 2014;9:e109872.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Watts ME, Pocock R, Claudianos C. Brain vitality and oxygen metabolism: rising function in regular operate and illness. Front Mol Neurosci. 2018;11:216.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lopes Cardoso I, Almeida S. Genes concerned within the improvement of autism. Int Arch Commun Disord. 2019;2:011.

  • Kurochkin I, Khrameeva E, Tkachev A, Stepanova V, Vanyushkina A, Stekolshchikova E, et al. Metabolome signature of autism within the human prefrontal cortex. Commun Biol. 2019;2:234.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Elia J, Glessner JT, Wang Ok, Takahashi N, Shtir CJ, Hadley D, et al. Genome-wide copy quantity variation examine associates metabotropic glutamate receptor gene networks with consideration deficit hyperactivity dysfunction. Nat Genet. 2011;44:78–84.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lal D, Pernhorst Ok, Klein KM, Reif P, Tozzi R, Toliat MR, et al. Extending the phenotypic spectrum of RBFOX1 deletions: Sporadic focal epilepsy. Epilepsia. 2015;56:e129–133.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Griswold AJ, Dueker ND, Van Booven D, Rantus JA, Jaworski JM, Slifer SH, et al. Targeted massively parallel sequencing of autism spectrum disorder-associated genes in a case management cohort reveals uncommon loss-of-function danger variants. Mol Autism. 2015;6:43.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu B, Roos JL, Levy S, van Rensburg EJ, Gogos JA, Karayiorgou M. Strong affiliation of de novo copy quantity mutations with sporadic schizophrenia. Nat Genet. 2008;40:880–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee JA, Damianov A, Lin CH, Fontes M, Parikshak NN, Anderson ES, et al. Cytoplasmic Rbfox1 regulates the expression of synaptic and autism-related genes. Neuron. 2016;89:113–28.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Frye RE. Mitochondrial dysfunction in autism spectrum dysfunction: distinctive abnormalities and focused therapies. Semin Pediatr Neurol. 2020;35:100829.

    Article 
    PubMed 

    Google Scholar
     

  • Boenzi S, Diodato D. Biomarkers for mitochondrial vitality metabolism ailments. Essays Biochem. 2018;62:443–54.

    Article 
    PubMed 

    Google Scholar
     

  • Khemakhem AM, Frye RE, El-Ansary A, Al-Ayadhi L, Bacha AB. Novel biomarkers of metabolic dysfunction is autism spectrum dysfunction: potential for organic diagnostic markers. Metab Brain Dis. 2017;32:1983–97.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Correia C, Coutinho AM, Diogo L, Grazina M, Marques C, Miguel T, et al. Brief report: High frequency of biochemical markers for mitochondrial dysfunction in autism: no affiliation with the mitochondrial aspartate/glutamate service SLC25A12 gene. J Autism Dev Disord. 2006;36:1137–40.

    Article 
    PubMed 

    Google Scholar
     

  • Ramirez-Celis A, Edmiston E, Schauer J, Vu T, Van de Water J. Peptides of neuron particular enolase as potential ASD biomarkers: from discovery to epitope mapping. Brain Behav Immun. 2020;84:200–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ramirez-Celis A, Becker M, Nuño M, Schauer J, Aghaeepour N, Van de Water J. Risk evaluation evaluation for maternal autoantibody-related autism (MAR-ASD): a subtype of autism. Mol Psychiatry. 2021;26:1551–60.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Braunschweig D, Krakowiak P, Duncanson P, Boyce R, Hansen RL, Ashwood P, et al. Autism-specific maternal autoantibodies acknowledge vital proteins in growing mind. Transl Psychiatry. 2013;3:e277–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mergenthaler P, Lindauer U, Dienel GA, Meisel A. Sugar for the mind: the function of glucose in physiological and pathological mind operate. Trends Neurosci. 2013;36:587–97.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vannucci SJ. Developmental expression of GLUT1 and GLUT3 glucose transporters in rat mind. J Neurochem. 1994;62:240–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou J, Burns MP, Huynh L, Villapol S, Taub DD, Saavedra JM, et al. Temporal modifications in cortical and hippocampal expression of genes vital for mind glucose metabolism following managed cortical influence harm in mice. Front Endocrinol. 2017;8:231.

    Article 

    Google Scholar
     

  • Zhao Y, Fung C, Shin D, Shin BC, Thamotharan S, Sankar R, et al. Neuronal glucose transporter isoform 3 poor mice display options of autism spectrum issues. Mol Psychiatry. 2010;15:286–99.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu M, Chen Y, Sun M, Du Y, Bai Y, Lei G, et al. Auts2 regulated autism-like habits, glucose metabolism and oxidative stress in mice. Exp Neurol. 2022;361:114298.

    Article 
    PubMed 

    Google Scholar
     

  • Orth M, Bellosta S. Cholesterol: its regulation and function in central nervous system issues. Cholesterol. 2012;2012:292598.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pikuleva IA, Cartier N. Cholesterol hydroxylating cytochrome P450 46A1: from mechanisms of motion to scientific functions. Front Aging Neurosci. 2021;13:696778.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grayaa S, Zerbinati C, Messedi M, HadjKacem I, Chtourou M, Ben Touhemi D, et al. Plasma oxysterol profiling in youngsters reveals 24-hydroxycholesterol as a possible marker for Autism Spectrum Disorders. Biochimie. 2018;153:80–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bradshaw NJ, Porteous DJ. DISC1-binding proteins in neural improvement, signalling and schizophrenia. Neuropharmacology. 2012;62:1230–41.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Deng D, Jian C, Lei L, Zhou Y, McSweeney C, Dong F, et al. A prenatal interruption of DISC1 operate within the mind reveals an enduring influence on grownup behaviors, mind metabolism, and interneuron improvement. Oncotarget. 2017;8:84798–817.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jouroukhin Y, Kageyama Y, Misheneva V, Shevelkin A, Andrabi S, Prandovszky E, et al. DISC1 regulates lactate metabolism in astrocytes: implications for psychiatric issues. Transl Psychiatry. 2018;8:76–6.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wentz E, Björk A, Dahlgren J. Neurodevelopmental issues are extremely over-represented in youngsters with weight problems: a cross-sectional examine. Obes (Silver Spring). 2017;25:178–84.

    Article 

    Google Scholar
     

  • Köse S, Yılmaz Kafalı H, Erkan İdris ZG, Şentürk Pilan B, Özbaran B, Erermiş S. The prevalence and danger components for obese/weight problems amongst Turkish youngsters with neurodevelopmental issues. Res Develop Disab. 2021;114:103992

    Article 

    Google Scholar
     

  • Labouesse MA, Lassalle O, Richetto J, Iafrati J, Weber-Stadlbauer U, Notter T, et al. Hypervulnerability of the adolescent prefrontal cortex to dietary stress by way of reelin deficiency. Mol Psychiatry. 2017;22:961–71.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lane-Donovan C, Herz J. The ApoE receptors Vldlr and Apoer2 in central nervous system operate and illness: thematic evaluate collection: ApoE and lipid homeostasis in Alzheimer’s Disease. J Lipid Res. 2017;58:1036–43.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roberts BL, Bennett BJ, Bennett CM, Carroll JM, Dalbøge LS, Hall C, et al. Reelin is modulated by diet-induced weight problems and has direct actions on arcuate proopiomelanocortin neurons. Mol Metab. 2019;26:18–29.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Uchino S, Waga C. SHANK3 as an autism spectrum disorder-associated gene. Brain Dev. 2013;35:106–10.

    Article 
    PubMed 

    Google Scholar
     

  • Torossian A, Saré RM, Loutaev I, Smith CB. Increased charges of cerebral protein synthesis in Shank3 knockout mice: Implications for a hyperlink between synaptic protein deficit and dysregulated protein synthesis in autism spectrum dysfunction/mental incapacity. Neurobiol Dis. 2021;148:105213.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Anil Kumar BN, Malhotra S, Bhattacharya A, Grover S, Batra YK. Regional cerebral glucose metabolism and its affiliation with phenotype and cognitive functioning in sufferers with autism. Indian J Psychol Med. 2017;39:262–70.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thomas RH, Foley KA, Mepham JR, Tichenoff LJ, Possmayer F, MacFabe DF. Altered mind phospholipid and acylcarnitine profiles in propionic acid infused rodents: additional improvement of a possible mannequin of autism spectrum issues. J Neurochem. 2010;113:515–29.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rumsey JM, Duara R, Grady C, Rapoport JL, Margolin RA, Rapoport SI, et al. Brain metabolism in autism: resting cerebral glucose utilization charges as measured with positron emission tomography. Arch Gen Psychiatry. 1985;42:448–55.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Oh M, Kim SA, Yoo HJ. Higher lactate stage and lactate-to-pyruvate ratio in autism spectrum dysfunction. Exp Neurobiol. 2020;29:314–22.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Di Gialleonardo V, Wilson DM, Keshari KR. The potential of metabolic imaging. Semin Nucl Med. 2016;46:28–39.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Żarnowska I, Chrapko B, Gwizda G, Nocuń A, Mitosek-Szewczyk Ok, Gasior M. Therapeutic use of carbohydrate-restricted diets in an autistic little one; a case report of scientific and 18FDG PET findings. Metab Brain Dis. 2018;33:1187–92.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leblanc H. Brain abnormality findings in F18-FDG PET/CT imaging and its function within the scientific analysis of autism. J Nucl Med. 2017;58:828.


    Google Scholar
     

  • Chivate R, Thakrar P, Narang J, Kumar S, Verma M, Patkar D. et al. PET/CT in Autism, A Diagnostic instrument. Int J Health Sci Res. 2016;6:99–106.

  • Manglunia AS, Puranik AD. FDG PET/CT findings in a clinically identified case of childhood autism. Indian J Nucl Med. 2016;31:138–40.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ajram LA, Pereira AC, Durieux AMS, Velthius HE, Petrinovic MM, McAlonan GM. The contribution of [1H] magnetic resonance spectroscopy to the examine of excitation-inhibition in autism. Prog Neuro-Psychopharmacol Biol Psychiatry. 2019;89:236–44.

    Article 
    CAS 

    Google Scholar
     

  • Hyder F, Rothman DL. Advances in imaging mind metabolism. Annu Rev Biomed Eng. 2017;19:485–515.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Minshew NJ, Goldstein G, Dombrowski SM, Panchalingam Ok, Pettegrew JW. A preliminary 31P MRS examine of autism: proof for undersynthesis and elevated degradation of mind membranes. Biol Psychiatry. 1993;33:762–73.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Golomb BA, Erickson LC, Zeeland AAS-V, Koperski S, Haas RH, Wallace DC, et al. Assessing bioenergetic compromise in autism spectrum dysfunction with 31P magnetic resonance spectroscopy: preliminary report. J Child Neurol. 2013;29:187–93.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • El-Ansary A, Qasem H. Correction of fatty acids metabolism as remedy technique of autism. In: Angel C Editor. InTech. 2017.

  • Muir D, Berl S, Clarke DD. Acetate and fluoroacetate as attainable markers for glial metabolism in vivo. Brain Res. 1986;380:336–40.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wyss MT, Magistretti PJ, Buck A, Weber B. Labeled acetate as a marker of astrocytic metabolism. J Cereb Blood Flow Metab. 2011;31:1668–74.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Deford-Watts LM, Mintz A, Kridel SJ. The potential of 11C-acetate PET for monitoring the Fatty acid synthesis pathway in Tumors. Curr Pharm Biotechnol. 2013;14:300–12.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kato H, Okuno T, Isohashi Ok, Koda T, Shimizu M, Mochizuki H, et al. Astrocyte metabolism in a number of sclerosis investigated by 1-C-11 acetate PET. J Cereb Blood Flow Metab. 2020;41:369–79.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Takata Ok, Kato H, Shimosegawa E, Okuno T, Koda T, Sugimoto T, et al. 11C-acetate PET imaging in sufferers with a number of sclerosis. PloS One. 2014;9:e111598–98.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Duong MT, Chen YJ, Doot RK, Young AJ, Lee H, Cai J, et al. Astrocyte activation imaging with 11C-acetate and amyloid PET in delicate cognitive impairment as a consequence of Alzheimer pathology. Nucl Med Commun. 2021;42:1261–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Çetin F, Tunca H, Guney E, Iseri E. Neurotransmitter methods in autism spectrum dysfunction. In: Michael F Editor. InTech. 2015, pp 15–30.

  • Muller CL, Anacker AMJ, Veenstra-VanderWeele J. The serotonin system in autism spectrum dysfunction: from biomarker to animal fashions. Neuroscience. 2016;321:24–41.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kosillo P, Bateup HS. Dopaminergic dysregulation in syndromic autism spectrum issues: insights from genetic mouse fashions. Front Neural Circuits. 2021;15:700968–68.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Montanari M, Martella G, Bonsi P, Meringolo M. Autism spectrum dysfunction: give attention to glutamatergic neurotransmission. Int J Mol Sci. 2022;23:3861.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao H, Mao X, Zhu C, Zou X, Peng F, Yang W, et al. GABAergic system dysfunction in autism spectrum issues. Front Cell Dev Biol. 2022;9:781327.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cools R. Role of dopamine within the motivational and cognitive management of habits. Neuroscientist. 2008;14:381–95.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • DiCarlo GE, Aguilar JI, Matthies HJ, Harrison FE, Bundschuh KE, West A, et al. Autism-linked dopamine transporter mutation alters striatal dopamine neurotransmission and dopamine-dependent behaviors. J Clin Invest. 2019;129:3407–19.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hettinger JA, Liu X, Hudson ML, Lee A, Cohen IL, Michaelis RC, et al. DRD2 and PPP1R1B (DARPP-32) polymorphisms independently confer elevated danger for autism spectrum issues and additively predict affected standing in male-only affected sib-pair households. Behav Brain Funct. 2012; 8:19–9.

  • Hamilton PJ, Campbell NG, Sharma S, Erreger Ok, Herborg Hansen F, Saunders C, et al. De novo mutation within the dopamine transporter gene associates dopamine dysfunction with autism spectrum dysfunction. Mol Psychiatry. 2013;18:1315–23.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dierckx RAJO, Otte A, de Vries EFJ, van Waarde A, Leenders KL. PET and SPECT in Neurology. Springer International Publishing 2020.

  • Schalbroeck R, van Velden FHP, de Geus-Oei L-F, Yaqub M, van Amelsvoort T, Booij J, et al. Striatal dopamine synthesis capability in autism spectrum dysfunction and its relation with social defeat: an [(18)F]-FDOPA PET/CT examine. Transl Psychiatry. 2021;11:47–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schalbroeck R, de Geus-Oei LF, Selten JP, Yaqub M, Schrantee A, van Amelsvoort T, et al. Cerebral [(18)F]-FDOPA uptake in autism spectrum dysfunction and its affiliation with autistic traits. Diagnostics (Basel). 2021;11:2404.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nakamura Ok, Sekine Y, Ouchi Y, Tsujii M, Yoshikawa E, Futatsubashi M, et al. Brain serotonin and dopamine transporter bindings in adults with high-functioning autism. Arch Gen Psychiatry. 2010;67:59–68.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zürcher NR, Walsh EC, Phillips RD, Cernasov PM, Tseng C-EJ, Dharanikota A, et al. A simultaneous [11C]raclopride positron emission tomography and practical magnetic resonance imaging investigation of striatal dopamine binding in autism. Transl Psychiatry. 2021;11:33.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fernell E, Watanabe Y, Adolfsson I, Tani Y, Bergström M, Hartvig P, et al. Possible results of tetrahydrobiopterin remedy in six youngsters with autism-clinical and positron emission tomography knowledge: a pilot examine. Dev Med Child Neurol. 1997;39:313–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kubota M, Fujino J, Tei S, Takahata Ok, Matsuoka Ok, Tagai Ok, et al. Binding of Dopamine D1 receptor and noradrenaline transporter in people with autism spectrum dysfunction: a PET examine. Cereb Cortex. 2020;30:6458–68.

    Article 
    PubMed 

    Google Scholar
     

  • Yang CJ, Tan HP, Du YJ. The developmental disruptions of serotonin signaling might concerned in autism throughout early mind improvement. Neuroscience. 2014;267:1–10.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Adamsen D, Ramaekers V, Ho HT, Britschgi C, Rüfenacht V, Meili D, et al. Autism spectrum dysfunction related to low serotonin in CSF and mutations within the SLC29A4 plasma membrane monoamine transporter (PMAT) gene. Mol Autism. 2014;5:43.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sjaarda CP, Hecht P, McNaughton AJM, Zhou A, Hudson ML, Will MJ, et al. Interplay between maternal Slc6a4 mutation and prenatal stress: a attainable mechanism for autistic habits improvement. Sci Rep. 2017;7:8735.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Coutinho AM, Oliveira G, Morgadinho T, Fesel C, Macedo TR, Bento C, et al. Variants of the serotonin transporter gene (SLC6A4) considerably contribute to hyperserotonemia in autism. Mol Psychiatry. 2004;9:264–71.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wongpaiboonwattana W, Plong-On O, Hnoonual A, Limprasert P. Significant associations between 5-hydroxytryptaminetransporter-linked promoter area polymorphisms of the serotonin transporter (solute service household 6 member 4) gene and Thai sufferers with autism spectrum dysfunction. Medicine. 2020;99:e21946.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Coutinho AM, Sousa I, Martins M, Correia C, Morgadinho T, Bento C, et al. Evidence for epistasis between SLC6A4 and ITGB3 in autism etiology and within the dedication of platelet serotonin ranges. Hum Genet. 2007;121:243–56.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Roth W, Zadeh Ok, Vekariya R, Ge Y, Mohamadzadeh M. Tryptophan metabolism and gut-brain homeostasis. Int J Mol Sci. 2021;22:2973.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nourbakhsh B, Bhargava P, Tremlett H, Hart J, Graves J, Waubant E. Altered tryptophan metabolism is related to pediatric a number of sclerosis danger and course. Ann Clin Transl Neurol. 2018;5:1211–21.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sorgdrager F, van Der Ley CP, van Faassen M, Calus E, Nollen EA, Kema IP, et al. The impact of tryptophan 2,3-dioxygenase inhibition on kynurenine metabolism and cognitive operate within the APP23 mouse mannequin of Alzheimer’s Disease. Int J Tryptophan Res. 2020;13:1178646920972657–2657.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chiappelli J, Postolache TT, Kochunov P, Rowland LM, Wijtenburg SA, Shukla DK, et al. Tryptophan metabolism and white matter integrity in schizophrenia. Neuropsychopharmacology. 2016;41:2587–95.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Szabó N, Kincses ZT, Toldi J, Vécsei L. Altered tryptophan metabolism in Parkinson’s illness: a attainable novel therapeutic method. J Neurol Sci. 2011;310:256–60.

    Article 
    PubMed 

    Google Scholar
     

  • Boccuto L, Chen C-F, Pittman AR, Skinner CD, McCartney HJ, Jones Ok, et al. Decreased tryptophan metabolism in sufferers with autism spectrum issues. Mol Autism. 2013;4:16–16.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Asano E, Chugani DC, Muzik O, Behen M, Janisse J, Rothermel R, et al. Autism in tuberous sclerosis complicated is expounded to each cortical and subcortical dysfunction. Neurology. 2001;57:1269–77.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • De Felice LJ. A present view of serotonin transporters. F1000Res. 2016;5:F1000 Faculty Rev-1884.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cook EH Jr, Courchesne R, Lord C, Cox NJ, Yan S, Lincoln A, et al. Evidence of linkage between the serotonin transporter and autistic dysfunction. Mol Psychiatry. 1997;2:247–50.

    Article 
    PubMed 

    Google Scholar
     

  • Prasad HC, Steiner JA, Sutcliffe JS, Blakely RD. Enhanced exercise of human serotonin transporter variants related to autism. Philos Trans R Soc Lond B Biol Sci. 2009;364:163–73.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xie M-J, Iwata Ok, Ishikawa Y, Nomura Y, Tani T, Murata Ok, et al. Autistic-like habits and impairment of serotonin transporter and AMPA receptor trafficking in N-ethylmaleimide delicate issue gene-deficient mice. Front Genet. 2021;12:748627.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo CC-G, Minda JP, Homberg J. Serotonin transporter knockout in rats modulates class studying. bioRxiv. 2020: https://doi.org/10.1101/2020.11.09.373886.

  • Wilson AA, Ginovart N, Hussey D, Meyer J, Houle S. In vitro and in vivo characterisation of [11C]-DASB: a probe for in vivo measurements of the serotonin transporter by positron emission tomography. Nucl Med Biol. 2002;29:509–15.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Girgis RR, Slifstein M, Xu X, Frankle WG, Anagnostou E, Wasserman S, et al. The 5-HT(2A) receptor and serotonin transporter in Asperger’s dysfunction: a PET examine with [11C]MDL 100907 and [11C]DASB. Psychiatry Res. 2011;194:230–4.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Andersson M, Tangen Ä, Farde L, Bölte S, Halldin C, Borg J, et al. Serotonin transporter availability in adults with autism—a positron emission tomography examine. Mol Psychiatry. 2021;26:1647–58.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lundberg J, Halldin C, Farde L. Measurement of serotonin transporter binding with PET and [11C]MADAM: a test-retest reproducibility examine. Synapse. 2006;60:256–63.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Suehiro M, Scheffel U, Ravert HT, Dannals RF, Wagner HN Jr. [11C](+)McN5652 as a radiotracer for imaging serotonin uptake websites with PET. Life Sci. 1993;53:883–92.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Saitow F, Takumi T, Suzuki H. Upregulated 5-HT1A receptor-mediated currents within the prefrontal cortex layer 5 neurons within the 15q11–13 duplication mouse mannequin of autism. Mol Brain. 2020;13:115.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abdelrahman HM, Sherief LM, Alghobashy AA, Abdel Salam SM, Hashim HM, Abdel Fattah NR, et al. Association of 5-HT2A receptor gene polymorphisms with gastrointestinal issues in Egyptian youngsters with autistic dysfunction. Res Develop Disabil. 2015;36:485–90.

    Article 

    Google Scholar
     

  • Fan C, Gao Y, Liang G, Huang L, Wang J, Yang X, et al. Transcriptomics of Gabra4 knockout mice reveals frequent NMDAR pathways underlying autism, reminiscence, and epilepsy. Mol Autism. 2020;11:13.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen C-H, Huang C-C, Cheng M-C, Chiu Y-N, Tsai W-C, Wu Y-Y, et al. Genetic evaluation of GABRB3 as a candidate gene of autism spectrum issues. Mol Autism. 2014;5:36.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cook EH Jr, Courchesne RY, Cox NJ, Lord C, Gonen D, Guter SJ, et al. Linkage-disequilibrium mapping of autistic dysfunction, with 15q11-13 markers. Am J Hum Genet. 1998;62:1077–83.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fung LK, Flores RE, Gu M, Sun KL, James D, Schuck RK, et al. Thalamic and prefrontal GABA concentrations however not GABA(A) receptor densities are altered in high-functioning adults with autism spectrum dysfunction. Mol Psychiatry. 2021;26:1634–46.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Horder J, Andersson M, Mendez MA, Singh N, Tangen Ä, Lundberg J, et al. GABA(A) receptor availability is just not altered in adults with autism spectrum dysfunction or in mouse fashions. Sci Transl Med. 2018;10:eaam8434.

    Article 
    PubMed 

    Google Scholar
     

  • Mendez MA, Horder J, Myers J, Coghlan S, Stokes P, Erritzoe D, et al. The mind GABA-benzodiazepine receptor alpha-5 subtype in autism spectrum dysfunction: a pilot [(11)C]Ro15-4513 positron emission tomography examine. Neuropharmacology. 2013;68:195–201.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Safavynia SA, Keating G, Speigel I, Fidler JA, Kreuzer M, Rye DB, et al. Effects of γ-aminobutyric acid sort A receptor modulation by flumazenil on emergence from normal anesthesia. Anesthesiology. 2016;125:147–58.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • The Role of Glutamate within the Healthy Brain and within the Pathophysiology of Parkinson’s Disease. European Neurological Review. 2019;14(Suppl.2):2–12.

  • Nisar S, Bhat AA, Masoodi T, Hashem S, Akhtar S, Ali TA, et al. Genetics of glutamate and its receptors in autism spectrum dysfunction. Mol Psychiatry. 2022;27:2380–92.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wong DF, Waterhouse R, Kuwabara H, Kim J, Brašić JR, Chamroonrat W, et al. 18F-FPEB, a PET radiopharmaceutical for quantifying metabotropic glutamate 5 receptors: a first-in-human examine of radiochemical security, biokinetics, and radiation dosimetry. J Nucl Med. 2013;54:388–96.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Toyohara J, Sakata M, Oda Ok, Ishii Ok, Ito Ok, Hiura M, et al. Initial human PET research of metabotropic glutamate receptor sort 1 ligand 11C-ITMM. J Nucl Med. 2013;54:1302–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yamasaki T, Kumata Ok, Yui J, Fujinaga M, Furutsuka Ok, Hatori A, et al. Synthesis and analysis of [11C]MMPIP as a possible radioligand for imaging of metabotropic glutamate 7 receptor within the mind. EJNMMI Res. 2013;3:54.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cai G, Wang M, Wang S, Liu Y, Zhao Y, Zhu Y, et al. Brain mGluR5 in Shank3B(−/−) mice studied with in vivo [(18)F]FPEB PET imaging and ex vivo immunoblotting. Front Psychiatry. 2019;10:38–8.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fatemi SH, Wong DF, Brašić JR, Kuwabara H, Mathur A, Folsom TD, et al. Metabotropic glutamate receptor 5 tracer [(18)F]-FPEB shows elevated binding potential in postcentral gyrus and cerebellum of male people with autism: a pilot PET examine. Cerebellum Ataxias. 2018;5:3.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brašić JR, Nandi A, Russell DS, Jennings D, Barret O, Martin SD, et al. Cerebral expression of metabotropic glutamate receptor subtype 5 in idiopathic autism spectrum dysfunction and fragile X syndrome: a pilot examine. Int J Mol Sci. 2021;22:2863.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lefevre A, Richard N, Mottolese R, Leboyer M, Sirigu A. An affiliation between serotonin 1A receptor, grey matter quantity, and sociability in wholesome topics and in autism spectrum dysfunction. Autism Res. 2020;13:1843–55.

    Article 
    PubMed 

    Google Scholar
     

  • Beversdorf DQ, Nordgren RE, Bonab AA, Fischman AJ, Weise SB, Dougherty DD, et al. 5-HT2 receptor distribution proven by [18F] setoperone PET in high-functioning autistic adults. J Neuropsychiatry Clin Neurosci. 2012;24:191–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Goldberg J, Anderson GM, Zwaigenbaum L, Hall GB, Nahmias C, Thompson A, et al. Cortical serotonin type-2 receptor density in dad and mom of kids with autism spectrum issues. J Autism Dev Disord. 2009;39:97–104.

    Article 
    PubMed 

    Google Scholar
     

  • Park G, Jeon SJ, Ko IO, Park JH, Lee KC, Kim M-S, et al. Decreased in vivo glutamate/GABA ratio correlates with the social habits deficit in a mouse mannequin of autism spectrum dysfunction. Mol Brain. 2022;15:19.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zieminska E, Toczylowska B, Diamandakis D, Hilgier W, Filipkowski RK, Polowy R, et al. Glutamate, glutamine and GABA ranges in rat mind measured utilizing MRS, HPLC and NMR strategies in examine of two fashions of autism. Front Mol Neurosci. 2018;11:418.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luchicchi A, Bloem B, Viaña JNM, Mansvelder HD, Role LW. Illuminating the function of cholinergic signaling in circuits of consideration and emotionally salient behaviors. Front Synaptic Neurosci. 2014;6:24.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Picciotto MR, Higley MJ, Mineur YS. Acetylcholine as a neuromodulator: cholinergic signaling shapes nervous system operate and habits. Neuron. 2012;76:116–29.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mikhail FM, Lose EJ, Robin NH, Descartes MD, Rutledge KD, Rutledge SL, et al. Clinically related single gene or intragenic deletions encompassing vital neurodevelopmental genes in sufferers with developmental delay, psychological retardation, and/or autism spectrum issues. Am J Med Genet A. 2011;155a:2386–96.

    Article 
    PubMed 

    Google Scholar
     

  • Leblond CS, Heinrich J, Delorme R, Proepper C, Betancur C, Huguet G, et al. Genetic and practical analyses of SHANK2 mutations counsel a a number of hit mannequin of autism spectrum issues. PLoS Genet. 2012;8:e1002521.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Suzuki Ok, Sugihara G, Ouchi Y, Nakamura Ok, Tsujii M, Futatsubashi M, et al. Reduced acetylcholinesterase exercise within the fusiform gyrus in adults with autism spectrum issues. Arch Gen Psychiatry. 2011;68:306–13.

    Article 
    PubMed 

    Google Scholar
     

  • Drenthen GS, Barendse EM, Aldenkamp AP, van Veenendaal TM, Puts NAJ, Edden RAE, et al. Altered neurotransmitter metabolism in adolescents with high-functioning autism. Psychiatry Res Neuroimaging. 2016;256:44–9.

    Article 
    PubMed 

    Google Scholar
     

  • Cai Ok, Haris M, Singh A, Kogan F, Greenberg JH, Hariharan H, et al. Magnetic resonance imaging of glutamate. Nat Med. 2012;18:302–6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bagga P, Pickup S, Crescenzi R, Martinez D, Borthakur A, D’Aquilla Ok, et al. In vivo GluCEST MRI: reproducibility, background contribution and supply of glutamate modifications within the MPTP mannequin of Parkinson’s illness. Sci Rep. 2018;8:2883.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kogan F, Hariharan H, Reddy R. Chemical trade saturation switch (CEST) imaging: description of approach and potential scientific functions. Curr Radio Rep. 2013;1:102–14.

    Article 

    Google Scholar
     

  • Mao Y, Zhuang Z, Chen Y, Zhang X, Shen Y, Lin G, et al. Imaging of glutamate in acute traumatic mind harm utilizing chemical trade saturation switch. Quant Imaging Med Surg. 2019;9:1652–63.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roalf DR, Nanga RPR, Rupert PE, Hariharan H, Quarmley M, Calkins ME, et al. Glutamate imaging (GluCEST) reveals decrease mind GluCEST distinction in sufferers on the psychosis spectrum. Mol Psychiatry. 2017;22:1298–305.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Haris M, Nath Ok, Cai Ok, Singh A, Crescenzi R, Kogan F, et al. Imaging of glutamate neurotransmitter alterations in Alzheimer’s illness. NMR Biomed. 2013;26:386–91.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pépin J, de Longprez L, Trovero F, Brouillet E, Valette J, Flament J. Complementarity of gluCEST and (1) H-MRS for the examine of mouse fashions of Huntington’s illness. NMR Biomed. 2020;33:e4301.

    Article 
    PubMed 

    Google Scholar
     

  • Heinz A, Goldman D, Jones DW, Palmour R, Hommer D, Gorey JG, et al. Genotype influences in vivo dopamine transporter availability in human striatum. Neuropsychopharmacology. 2000;22:133–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bookheimer SY, Strojwas MH, Cohen MS, Saunders AM, Pericak-Vance MA, Mazziotta JC, et al. Patterns of mind activation in individuals in danger for Alzheimer’s illness. N. Engl J Med. 2000;343:450–6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mufford MS, Stein DJ, Dalvie S, Groenewold NA, Thompson PM, Jahanshad N. Neuroimaging genomics in psychiatry-a translational method. Genome Med. 2017;9:102–2.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Voineskos AN, Lett TAP, Lerch JP, Tiwari AK, Ameis SH, Rajji TK, et al. Neurexin-1 and frontal lobe white matter: an overlapping intermediate phenotype for schizophrenia and autism spectrum issues. PLOS ONE. 2011;6:e20982.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Whalley HC, O’Connell G, Sussmann JE, Peel A, Stanfield AC, Hayiou-Thomas ME, et al. Genetic variation in CNTNAP2 alters mind operate throughout linguistic processing in wholesome people. Am J Med Genet Part B: Neuropsychiatr Genet. 2011;156:941–8.

    Article 
    CAS 

    Google Scholar
     

  • Zeeland A, Abrahams B, Alvarez-Retuerto A, Sonnenblick L, Rudie J, Ghahremani D, et al. Altered practical connectivity in frontal lobe circuits is related to variation within the autism danger gene CNTNAP2. Sci Transl Med. 2010;2:56ra80.


    Google Scholar
     

  • Sauer S, Ziegler M, Danay E, Ives J, Kohls N. Specific objectivity of mindfulness—a rasch evaluation of the freiburg mindfulness stock. Mindfulness. 2013;4:45–54.

    Article 
    CAS 

    Google Scholar
     

  • Lintas C, Sacco R, Azzarà A, Cassano I, Gurrieri F. Genotype-phenotype correlations in relation to newly rising monogenic types of autism spectrum dysfunction and related neurodevelopmental issues: the significance of phenotype reevaluation after pangenomic outcomes. J Clin Med. 2021;10:5060.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chaddad A, Li J, Lu Q, Li Y, Okuwobi IP, Tanougast C, et al. Can autism be identified with synthetic intelligence? A story evaluate. Diagnostics (Basel, Switz). 2021;11:2032.

    Article 

    Google Scholar
     

  • Eslami T, Almuqhim F, Raiker JS, Saeed F. Machine studying strategies for diagnosing autism spectrum dysfunction and attention- deficit/hyperactivity dysfunction utilizing practical and structural MRI: a survey. Front Neuroinform. 2021;14:575999.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dekhil O, Hajjdiab H, Shalaby A, Ali MT, Ayinde B, Switala A, et al. Using resting state practical MRI to build a personalised autism analysis system. PLoS One. 2018;13:e0206351.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo X, Dominick KC, Minai AA, Li H, Erickson CA, Lu LJ. Diagnosing autism spectrum dysfunction from mind resting-state practical connectivity patterns utilizing a deep neural community with a novel characteristic choice methodology. Front Neurosci. 2017;11:460.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heinsfeld AS, Franco AR, Craddock RC, Buchweitz A, Meneguzzi F. Identification of autism spectrum dysfunction utilizing deep studying and the ABIDE dataset. Neuroimage Clin. 2017;17:16–23.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li H, Parikh NA, He L. A novel switch studying method to boost deep neural community classification of mind practical connectomes. Front Neurosci. 2018;12:491.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eslami T, Mirjalili V, Fong A, Laird AR, Saeed F. ASD-DiagNet: a hybrid studying method for detection of autism spectrum dysfunction utilizing fMRI knowledge. Front Neuroinform. 2019;13:70.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eslami T, Saeed F. Auto-ASD-network: a method primarily based on deep studying and help vector machines for diagnosing autism spectrum dysfunction utilizing fMRI Data. Proceedings of the tenth ACM International Conference on Bioinformatics, Computational Biology and Health Informatics. Association for Computing Machinery: Niagara Falls, NY, USA, 2019, pp 646–51.

  • Wang C, Xiao Z, Wang B, Wu J. Identification of Autism primarily based on SVM-RFE and stacked sparse auto-encoder. IEEE Access. 2019;7:118030–6.

    Article 

    Google Scholar
     

  • Ruan M, Webster PJ, Li X, Wang S. Deep neural community reveals the world of autism from a first-person perspective. Autism Res. 2021;14:333–42.

    Article 
    PubMed 

    Google Scholar
     

  • Sherkatghanad Z, Akhondzadeh M, Salari S, Zomorodi-Moghadam M, Abdar M, Acharya UR, et al. Automated detection of autism spectrum dysfunction utilizing a convolutional neural community. Front Neurosci. 2020;13:1325.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khosla M, Jamison Ok, Kuceyeski A, Sabuncu MR. Ensemble studying with 3D convolutional neural networks for practical connectome-based prediction. Neuroimage. 2019;199:651–62.

    Article 
    PubMed 

    Google Scholar
     

  • Haweel R, Seada N, Ghoniemy S, Alghamdi NS, El-Baz AA. CNN deep native and international ASD classification method with steady wavelet rework utilizing task-based FMRI. Sens (Basel). 2021;21:5822.

    Article 

    Google Scholar
     

  • Zou L, Zheng J, Miao C, Mckeown MJ, Wang ZJ. 3D CNN primarily based computerized analysis of consideration deficit hyperactivity dysfunction utilizing practical and structural MRI. IEEE Access. 2017;5:23626–36.

    Article 

    Google Scholar
     

  • Guan J, Wang Y, Lin Y, Yin Q, Zhuang Y, Ji G. Cell type-specific predictive fashions carry out prioritization of genes and gene units related to autism. Front Genet. 2020;11:628539.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Albahri AS, Hamid RA, Zaidan AA, Albahri OS. Early automated prediction mannequin for the analysis and detection of kids with autism spectrum issues primarily based on efficient sociodemographic and household attribute options. Neural Comput Appl. 2023;35:921–47.

    Article 

    Google Scholar
     

  • Rajendran DPD, Sundarraj RP. Using subject fashions with looking historical past in hybrid collaborative filtering recommender system: Experiments with consumer rankings. Int J Inf Manag Data Insights. 2021;1:100027.


    Google Scholar
     

  • Kohli M, Kar AK, Bangalore A, Ap P. Machine learning-based ABA remedy advice and personalization for autism spectrum dysfunction: an exploratory examine. Brain Inf. 2022;9:16.

    Article 

    Google Scholar
     

  • Megerian JT, Dey S, Melmed RD, Coury DL, Lerner M, Nicholls CJ, et al. Evaluation of a man-made intelligence-based medical machine for analysis of autism spectrum dysfunction. npj Digital Med. 2022;5:57.

    Article 

    Google Scholar
     

  • Mujeeb Rahman KK, Subashini MM. Identification of autism in youngsters utilizing static facial options and deep neural networks. Brain Sci. 2022;12:94.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Parlett-Pelleriti CM, Stevens E, Dixon D, Linstead EJ. Applications of unsupervised machine studying in autism spectrum dysfunction analysis: a evaluate. Rev J Autism Dev Disorders. 2022; https://doi.org/10.1007/s40489-021-00299-y.

  • Gardner-Hoag J, Novack M, Parlett-Pelleriti C, Stevens E, Dixon D, Linstead E. Unsupervised machine studying for figuring out difficult habits profiles to discover cluster-based remedy efficacy in youngsters with autism spectrum dysfunction: retrospective knowledge evaluation examine. JMIR Med Inf. 2021;9:e27793–93.

    Article 

    Google Scholar
     

  • Usta MB, Karabekiroglu Ok, Sahin B, Aydin M, Bozkurt A, Karaosman T, et al. Use of machine studying strategies in prediction of short-term end result in autism spectrum issues. Psychiatry Clin Psychopharmacol. 2019;29:320–5.

    Article 

    Google Scholar
     

  • Lin Y, Afshar S, Rajadhyaksha AM, Potash JB, Han S. A machine studying method to predicting autism danger genes: validation of identified genes and discovery of latest candidates. Front Genet. 2020;11:500064.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang H, Avillach P. Diagnostic classification and prognostic prediction utilizing frequent genetic variants in autism spectrum dysfunction: genotype-based deep studying. JMIR Med Inf. 2021;9:e24754.

    Article 

    Google Scholar
     

  • Alzubi R, Ramzan N, Alzoubi H. Hybrid characteristic choice methodology for autism spectrum dysfunction SNPs. 2017 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), Manchester, UK. 2017, pp 1–7; https://doi.org/10.1109/CIBCB.2017.8058526.

  • Chen CP, Keown CL, Jahedi A, Nair A, Pflieger ME, Bailey BA, et al. Diagnostic classification of intrinsic practical connectivity highlights somatosensory, default mode, and visible areas in autism. Neuroimage Clin. 2015;8:238–45.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang M, Zhang D, Huang J, Yap PT, Shen D, Liu M. Identifying autism spectrum dysfunction with multi-site fMRI by way of low-rank area adaptation. IEEE Trans Med Imaging. 2020;39:644–55.

    Article 
    PubMed 

    Google Scholar
     

  • Price T, Wee CY, Gao W, Shen D. Multiple-network classification of childhood autism utilizing practical connectivity dynamics. Med Image Comput Comput Assist Inter. 2014;17:177–84.


    Google Scholar
     

  • Chen H, Duan X, Liu F, Lu F, Ma X, Zhang Y, et al. Multivariate classification of autism spectrum dysfunction utilizing frequency-specific resting-state practical connectivity—a multi-center examine. Prog Neuro-Psychopharmacol Biol Psychiatry. 2016;64:1–9.

    Article 

    Google Scholar
     

  • Traut N, Heuer Ok, Lemaître G, Beggiato A, Germanaud D, Elmaleh M, et al. Insights from an autism imaging biomarker problem: guarantees and threats to biomarker discovery. Neuroimage. 2022;255:119171.

    Article 
    PubMed 

    Google Scholar
     

  • Katuwal GJ, Cahill ND, Baum SA, Michael AM. The predictive energy of structural MRI in Autism analysis. Annu Int Conf IEEE Eng Med Biol Soc. 2015;2015:4270–3.

    PubMed 

    Google Scholar
     

  • Duchesnay E, Cachia A, Boddaert N, Chabane N, Mangin J-F, Martinot J-L, et al. Feature choice and classification of imbalanced datasets: utility to PET pictures of kids with autistic spectrum issues. Neuroimage. 2011;57:1003–14.

    Article 
    PubMed 

    Google Scholar
     

  • Koumakis L. Deep studying fashions in genomics; are we there but? Comput Struct Biotechnol J. 2020;18:1466–73.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • - Advertisement -
    Pet News 2Day
    Pet News 2Dayhttps://petnews2day.com
    About the editor Hey there! I'm proud to be the editor of Pet News 2Day. With a lifetime of experience and a genuine love for animals, I bring a wealth of knowledge and passion to my role. Experience and Expertise Animals have always been a central part of my life. I'm not only the owner of a top-notch dog grooming business in, but I also have a diverse and happy family of my own. We have five adorable dogs, six charming cats, a wise old tortoise, four adorable guinea pigs, two bouncy rabbits, and even a lively flock of chickens. Needless to say, my home is a haven for animal love! Credibility What sets me apart as a credible editor is my hands-on experience and dedication. Through running my grooming business, I've developed a deep understanding of various dog breeds and their needs. I take pride in delivering exceptional grooming services and ensuring each furry client feels comfortable and cared for. Commitment to Animal Welfare But my passion extends beyond my business. Fostering dogs until they find their forever homes is something I'm truly committed to. It's an incredibly rewarding experience, knowing that I'm making a difference in their lives. Additionally, I've volunteered at animal rescue centers across the globe, helping animals in need and gaining a global perspective on animal welfare. Trusted Source I believe that my diverse experiences, from running a successful grooming business to fostering and volunteering, make me a credible editor in the field of pet journalism. I strive to provide accurate and informative content, sharing insights into pet ownership, behavior, and care. My genuine love for animals drives me to be a trusted source for pet-related information, and I'm honored to share my knowledge and passion with readers like you.
    -Advertisement-

    Latest Articles

    -Advertisement-

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here
    Captcha verification failed!
    CAPTCHA user score failed. Please contact us!