Tuesday, May 21, 2024
Tuesday, May 21, 2024
HomePet Industry NewsPet Travel NewsFMR1 removal in rats causes hyperactivity without any modifications in striatal dopamine...

FMR1 removal in rats causes hyperactivity without any modifications in striatal dopamine transporter schedule

Date:

Related stories

-Advertisement-spot_img
-- Advertisment --
- Advertisement -
  • DSM-5. Diagnostic and Analytical Handbook of Mental Illness: DSM-5 (American Psychiatric Association, 2013).

    Google Scholar.

  • Tune, F. J., Barton, P., Sleightholme, V., Yao, G. L. & & Fry-Smith, A. Screening for delicate X syndrome: a literature evaluation and modelling research study. Health Technol. Examine 7, 1– 106. https://doi.org/10.3310/hta7160 (2003 ).

    Post.

    Google Scholar.

  • Hagerman, R. J. et al. Vulnerable X syndrome. Nat. Rev. Dis. Guides 3, 17065. https://doi.org/10.1038/nrdp.2017.65 (2017 ).

    Post.

    Google Scholar.

  • Maurin, T., Zongaro, S. & & Bardoni, B. Fragile X Syndrome: from molecular pathology to treatment. Neurosci. Biobehav. Rev. 46( Pt 2), 242– 255. https://doi.org/10.1016/j.neubiorev.2014.01.006 (2014 ).

    Post.

    Google Scholar.

  • Harris, S. W. et al. Autism profiles of males with delicate X syndrome. Am. J. Ment. Slow down. 113, 427– 438. https://doi.org/10.1352/2008.113:427-438 (2008 ).

    Post.

    Google Scholar.

  • Hernandez, R. N. et al. Autism spectrum condition in delicate X syndrome: a longitudinal examination. Am. J. Medication. Genet. A 149A, 1125– 1137. https://doi.org/10.1002/ajmg.a.32848 (2009 ).

    Post.

    Google Scholar.

  • Doya, K. Complementary functions of basal ganglia and cerebellum in knowing and motor control. Curr. Opin. Neurobiol. 10, 732– 739. https://doi.org/10.1016/S0959-4388( 00 )00153-7 (2000 ).

    Post.

    Google Scholar.

  • Schultz, W. Dopamine nerve cells and their function in benefit systems. Curr. Opin. Neurobiol. 7, 191– 197. https://doi.org/10.1016/S0959-4388( 97 )80007-4 (1997 ).

    Post.

    Google Scholar.

  • Nieoullon, A. Dopamine and the guideline of cognition and attention. Prog. Neurobiol. 67, 53– 83. https://doi.org/10.1016/S0301-0082( 02 )00011-4 (2002 ).

    Post.

    Google Scholar.

  • Schultz, W. Upgrading dopamine benefit signals. Curr. Opin. Neurobiol. 23, 229– 238. https://doi.org/10.1016/j.conb.2012.11.012 (2013 ).

    Post.

    Google Scholar.

  • Gadow, K. D., Roohi, J., DeVincent, C. J. & & Hatchwell, E. Association of ADHD, tics, and stress and anxiety with dopamine transporter (DAT1) genotype in autism spectrum condition. J. Kid Psychol. Psychiatry 49, 1331– 1338. https://doi.org/10.1111/j.1469-7610.2008.01952.x (2008 ).

    Post.

    Google Scholar.

  • Bowton, E. et al. SLC6A3 coding alternative Ala559Val discovered in 2 autism probands modifies dopamine transporter function and trafficking. Transl. Psychiatry 4, e464. https://doi.org/10.1038/tp.2014.90 (2014 ).

    Post.

    Google Scholar.

  • Anderson, B. M. et al. Assessment of association to autism of typical hereditary variationin genes associated with dopamine. Autism. Res. 1, 364– 369. https://doi.org/10.1002/aur.55 (2008 ).

    Post.

    Google Scholar.

  • Pavăl, D. A dopamine hypothesis of autism spectrum condition. Dev. Neurosci. 39, 355– 360. https://doi.org/10.1159/000478725 (2017 ).

    Post.

    Google Scholar.

  • Lewis, M. & & Kim, S. J. The pathophysiology of limited recurring habits. J. Neurodev. Disord. 1, 114– 132. https://doi.org/10.1007/s11689-009-9019-6 (2009 ).

    Post.

    Google Scholar.

  • Surmeier, D. J., Ding, J., Day, M., Wang, Z. & & Shen, W. D1 and D2 dopamine-receptor modulation of striatal glutamatergic signaling in striatal medium spiny nerve cells. Trends Neurosci. 30, 228– 235. https://doi.org/10.1016/j.tins.2007.03.008 (2007 ).

    Post.

    Google Scholar.

  • Chen, S. Y. et al. Parcellation of the striatal complex into dorsal and forward districts. Proc. Natl. Acad. Sci. U S A 117, 7418– 7429. https://doi.org/10.1073/pnas.1921007117 (2020 ).

    Post.
    ADS.

    Google Scholar.

  • Yin, H. H. & & Knowlton, B. J. The function of the basal ganglia in routine development. Nat. Rev. Neurosci. 7, 464– 476. https://doi.org/10.1038/nrn1919 (2006 ).

    Post.

    Google Scholar.

  • Graybiel, A. M. & & Grafton, S. T. The striatum: where abilities and practices fulfill. Cold Spring Harb. Perspect. Biol. 7, a021691. https://doi.org/10.1101/cshperspect.a021691 (2015 ).

    Post.

    Google Scholar.

  • Fieblinger, T. Striatal control of motion: A function for brand-new neuronal (sub-) Populations?. Front. Hum. Neurosci. 15, 697284. https://doi.org/10.3389/fnhum.2021.697284 (2021 ).

    Post.

    Google Scholar.

  • Langen, M. et al. Modifications in the advancement of striatum are associated with recurring habits in autism. Biol. Psychiatry 76, 405– 411. https://doi.org/10.1016/j.biopsych.2013.08.013 (2014 ).

    Post.

    Google Scholar.

  • Langen, M., Durston, S., Kas, M. J., van Engeland, H. & & Staal, W. G. The neurobiology of recurring habits: … and guys. Neurosci. Biobehav. Rev. 35, 356– 365. https://doi.org/10.1016/j.neubiorev.2010.02.005 (2011 ).

    Post.

    Google Scholar.

  • Rodriguiz, R. M., Chu, R., Caron, M. G. & & Wetsel, W. C. Aberrant actions in social interaction of dopamine transporter knockout mice. Behav. Brain Res. 148, 185– 198. https://doi.org/10.1016/s0166-4328( 03 )00187-6 (2004 ).

    Post.

    Google Scholar.

  • Giros, B., Jaber, M., Jones, S. R., Wightman, R. M. & & Caron, M. G. Hyperlocomotion and indifference to drug and amphetamine in mice doing not have the dopamine transporter. Nature 379, 606– 612. https://doi.org/10.1038/379606a0 (1996 ).

    Post.
    ADS.

    Google Scholar.

  • Hadar, R. et al. Rats overexpressing the dopamine transporter show behavioral and neurobiological problems with significance to recurring conditions. Sci. Rep. 6, 39145. https://doi.org/10.1038/srep39145 (2016 ).

    Post.
    ADS.

    Google Scholar.

  • Sotnikova, T. D., Efimova, E. V. & & Gainetdinov, R. R. Boosted dopamine transmission and hyperactivity in the dopamine transporter heterozygous mice doing not have the D3 dopamine receptor. Int. J. Mol. Sci. 21, 8216. https://doi.org/10.3390/ijms21218216 (2020 ).

    Post.

    Google Scholar.

  • Ciaccio, C. et al. Vulnerable X syndrome: an evaluation of medical and molecular medical diagnoses. Ital. J. Pediatr. 43, 39. https://doi.org/10.1186/s13052-017-0355-y (2017 ).

    Post.

    Google Scholar.

  • Chromik, L. C. et al. The impact of hyperactivity, impulsivity, and attention issues on social working in teenagers and young people with delicate X syndrome. J. Atten. Disord. 23, 181– 188. https://doi.org/10.1177/1087054715571739 (2019 ).

    Post.

    Google Scholar.

  • Golden, C. E. M. et al. Removal of the KH1 domain of Fmr1 results in transcriptional changes and attentional deficits in rats. Cereb Cortex 29, 2228– 2244. https://doi.org/10.1093/cercor/bhz029 (2019 ).

    Post.

    Google Scholar.

  • Schiavi, S. et al. Perinatal supplements with omega-3 fats fixes the aberrant social and cognitive characteristics observed in a hereditary design of autism based upon FMR1 removal in rats. Nutr. Neurosci. 25( 5 ), 898– 911. https://doi.org/10.1080/1028415X.2020.1819107 (2020 ).

    Post.

    Google Scholar.

  • Schiavi, S. et al. Anandamide and 2-arachidonoylglycerol differentially regulate autistic-like characteristics in a hereditary design of autism based upon FMR1 removal in rats. Neuropsychopharmacology https://doi.org/10.1038/s41386-022-01454-7 (2022 ).

    Post.

    Google Scholar.

  • Nikolaus, S. et al. GABAergic control of nigrostriatal and mesolimbic dopamine in the rat brain. Front. Behav. Neurosci. 12, 38 (2018 ).

    Post.

    Google Scholar.

  • Nikolaus, S., Antke, C., Hautzel, H. & & Mueller, H. W. Medicinal treatment with L-DOPA might lower striatal dopamine transporter binding in in vivo imaging research studies. Nuklearmedizin 55, 21– 28. https://doi.org/10.3413/Nukmed-0764-15-08 (2016 ).

    Post.

    Google Scholar.

  • Nikolaus, S. et al. DAT versus D2 receptor binding in the rat striatum: l-DOPA-induced motor activity is much better anticipated by reuptake than release of dopamine. Synapse 70, 369– 377. https://doi.org/10.1002/syn.21911 (2016 ).

    Post.

    Google Scholar.

  • Suwijn, S. R., de Bruin, K., de Bie, R. M. A. & & Booij, J. The function of SPECT imaging of the dopaminergic system in translational research study on Parkinson’s illness. Parkinsonism Relat. Disord. 20, S184– S186. https://doi.org/10.1016/S1353-8020( 13 )70043-9 (2014 ).

    Post.

    Google Scholar.

  • Massari, R., D’Elia, A. & & Soluri, A. A brand-new high-resolution imaging system (HiRIS2) detector for preclinical SPECT imaging. Nucl. Instrum. Approaches Phys. Res. Sect. A 917, 25– 30. https://doi.org/10.1016/j.nima.2018.11.095 (2019 ).

    Post.
    ADS.

    Google Scholar.

  • Massari, R., D’Elia, A. & & Soluri, A. Initial outcomes on a little animal SPECT system based upon H13700 PSMPT paired with CRY018 selection. Nucl. Instrum. Approaches Phys. Res. Sect. A 940, 296– 301. https://doi.org/10.1016/j.nima.2019.06.013 (2019 ).

    Post.
    ADS.

    Google Scholar.

  • Massari, R., D’Elia, A., Soluri, A. & & Soluri, A. Super spatial resolution (SSR) technique for little animal SPECT imaging: a Monte Carlo research study. Nucl. Instrum. Approaches Phys. Res. Sect. A: Accel. Spectrom. Identify. Assoc. Equip. 982, 164584. https://doi.org/10.1016/j.nima.2020.164584 (2020 ).

    Post.

    Google Scholar.

  • D’Elia, A. et al. Advancement of a high-resolution SSR-SPECT system for preclinical imaging and neuroimaging. Nucl. Instrum. Approaches Phys. Res. Sect. A: Accel. Spectrom. Identify. Assoc. Equip. 1025, 166161. https://doi.org/10.1016/j.nima.2021.166161 (2022 ).

    Post.

    Google Scholar.

  • Kilkenny, C., Browne, W. J., Cuthill, I. C., Emerson, M. & & Altman, D. G. Improving bioscience research study reporting: the ARRIVE standards for reporting animal research study. PLoS Biol. 8, e1000412. https://doi.org/10.1371/journal.pbio.1000412 (2010 ).

    Post.

    Google Scholar.

  • Makanjuola, R. O., Hill, G., Dow, R. C., Campbell, G. & & Ashcroft, G. W. The results of psychotropic drugs on exploratory and stereotyped behaviour of rats studied on a hole-board. Psychopharmacology 55, 67– 74. https://doi.org/10.1007/BF00432819 (1977 ).

    Post.

    Google Scholar.

  • Servadio, M., Vanderschuren, L. J. & & Trezza, V. Designing autism-relevant behavioral phenotypes in rats and mice: Do “autistic” rodents exist?. Behav. Pharmacol. 26, 522– 540. https://doi.org/10.1097/FBP.0000000000000163 (2015 ).

    Post.

    Google Scholar.

  • Melancia, F. et al. Sex-specific autistic endophenotypes caused by prenatal direct exposure to valproic acid include anandamide signalling. Br. J. Pharmacol. 175, 3699– 3712. https://doi.org/10.1111/bph.14435 (2018 ).

    Post.

    Google Scholar.

  • Schiavi, S. et al. N-acetylcysteine alleviates social dysfunction in a rat design of autism stabilizing glutathione imbalance and the modified expression of genes associated with synaptic function in particular brain locations. Front. Psychiatry 13, 851679. https://doi.org/10.3389/fpsyt.2022.851679 (2022 ).

    Post.

    Google Scholar.

  • Schiavi, S. et al. Reward-related behavioral, neurochemical and electrophysiological modifications in a rat design of autism based upon prenatal direct exposure to valproic acid. Front. Cell Neurosci. 13, 479. https://doi.org/10.3389/fncel.2019.00479 (2019 ).

    Post.

    Google Scholar.

  • Sestakova, N., Puzserova, A., Kluknavsky, M. & & Bernatova, I. Decision of motor activity and anxiety-related behaviour in rodents: methodological elements and function of nitric oxide. Interdiscip. Toxicol. 6, 126– 135. https://doi.org/10.2478/intox-2013-0020 (2013 ).

    Post.

    Google Scholar.

  • Manduca, A. et al. Sex-specific behavioural deficits caused at early life by prenatal direct exposure to the cannabinoid receptor agonist WIN55, 212-2 depend upon mGlu5 receptor signalling. Br. J. Pharmacol. 177, 449– 463. https://doi.org/10.1111/bph.14879 (2020 ).

    Post.

    Google Scholar.

  • Manduca, A. et al. Unique functions of the endocannabinoids anandamide and 2-arachidonoylglycerol in social habits and emotionality at various developmental ages in rats. Eur. Neuropsychopharmacol. 25, 1362– 1374. https://doi.org/10.1016/j.euroneuro.2015.04.005 (2015 ).

    Post.

    Google Scholar.

  • Hammond, W. T. et al. A gamma video camera re-evaluation of potassium iodide obstructing performance in mice. Health Phys. 92, 396– 406. https://doi.org/10.1097/01.HP.0000252322.45350.ee (2007 ).

    Post.

    Google Scholar.

  • Pahuja, D. N., Rajan, M. G., Borkar, A. V. & & Samuel, A. M. Potassium iodate and its contrast to potassium iodide as a blocker of 131 I uptake by the thyroid in rats. Health Phys. 65, 545– 549. https://doi.org/10.1097/00004032-199311000-00014 (1993 ).

    Post.

    Google Scholar.

  • Leung, A. M. et al. American thyroid association clinical declaration on making use of potassium iodide consumption in a nuclear emergency situation. Thyroid 27, 865– 877. https://doi.org/10.1089/thy.2017.0054 (2017 ).

    Post.

    Google Scholar.

  • Nikolaus, S. et al. Impacts of L-DOPA on striatal iodine-123-FP-CIT binding and behavioral specifications in the rat. Nucl. Medication. Commun. 34, 1223– 1232. https://doi.org/10.1097/MNM.0b013e3283657404 (2013 ).

    Post.

    Google Scholar.

  • Nikolaus, S., Antke, C. & & Muller, H. W. In vivo imaging of synaptic function in the main nerve system: II. Psychological and affective conditions. Behav. Brain Res. 204, 32– 66. https://doi.org/10.1016/j.bbr.2009.06.009 (2009 ).

    Post.

    Google Scholar.

  • Nikolaus, S., Antke, C., Beu, M. & & Muller, H. W. Cortical GABA, striatal dopamine and midbrain serotonin as the crucial gamers in compulsive and stress and anxiety conditions– arises from in vivo imaging research studies. Rev. Neurosci. 21, 119– 139. https://doi.org/10.1515/revneuro.2010.21.2.119 (2010 ).

    Post.

    Google Scholar.

  • Palermo, G., Giannoni, S., Bellini, G., Siciliano, G. & & Ceravolo, R. Dopamine transporter imaging, present status of a possible biomarker: a detailed evaluation. Int. J. Mol. Sci. 22, 11234. https://doi.org/10.3390/ijms222011234 (2021 ).

    Post.

    Google Scholar.

  • Booij, J. et al. [123I] FP-CIT binds to the dopamine transporter as examined by biodistribution research studies in rats and SPECT research studies in MPTP-lesioned monkeys. Synapse 27, 183– 190. https://doi.org/10.1002/( SICI) 1098-2396( 199711 )27:3% 3c183:: AID-SYN4% 3e3.0. CO; 2-9 (1997 ).

    Post.

    Google Scholar.

  • Nikolaus, S. et al. Medicinal obstacle and synaptic reaction– evaluating dopaminergic function in the rat striatum with little animal single-photon emission calculated tomography (SPECT) and positron emission tomography (FAMILY PET). Rev. Neurosci. 22, 625– 645. https://doi.org/10.1515/RNS.2011.054 (2011 ).

    Post.

    Google Scholar.

  • Scherfler, C. et al. Examination of striatal dopamine transporter function in rats by in vivo beta-[123I] CIT pinhole SPECT. Neuroimage 17, 128– 141. https://doi.org/10.1006/nimg.2002.1158 (2002 ).

    Post.

    Google Scholar.

  • Lancaster, J. L. et al. Automated local behavioral analysis for human brain images. Front. Neuroinform. 6, 23. https://doi.org/10.3389/fninf.2012.00023 (2012 ).

    Post.

    Google Scholar.

  • Loening, A. M. & & Gambhir, S. S. AMIDE: a complimentary software application tool for multimodality medical image analysis. Mol. Imag. 2, 131– 137. https://doi.org/10.1162/153535003322556877 (2003 ).

    Post.

    Google Scholar.

  • Laruelle, M. et al. Compartmental modeling of iodine-123-iodobenzofuran binding to dopamine D2 receptors in healthy topics. J. Nucl. Medication. 35, 743– 754 (1994 ).

    Google Scholar.

  • Percie du Sert, N. et al. The show up standards 2.0: upgraded standards for reporting animal research study. PLoS Biol. 18, e3000410. https://doi.org/10.1371/journal.pbio.3000410 (2020 ).

    Post.

    Google Scholar.

  • Sorensen, E. M. et al. Hyperactivity and absence of social discrimination in the teen Fmr1 knockout mouse. Behav. Pharmacol. 26, 733– 740. https://doi.org/10.1097/FBP.0000000000000152 (2015 ).

    Post.

    Google Scholar.

  • Dolan, B. M. et al. Rescue of delicate X syndrome phenotypes in Fmr1 KO mice by the small-molecule PAK inhibitor FRAX486. Proc. Natl. Acad. Sci. U S A 110, 5671– 5676. https://doi.org/10.1073/pnas.1219383110 (2013 ).

    Post.
    ADS.

    Google Scholar.

  • Sare, R. M., Figueroa, C., Lemons, A., Loutaev, I. & & Beebe Smith, C. Relative Behavioral Phenotypes of Fmr1 KO, Fxr2 Het, and Fmr1 KO/Fxr2 Het Mice. Brain Sci. 9, 13. https://doi.org/10.3390/brainsci9010013 (2019 ).

    Post.

    Google Scholar.

  • Ding, Q., Sethna, F. & & Wang, H. Behavioral analysis of male and female Fmr1 knockout mice on C57BL/6 background. Behav. Brain Res. 271, 72– 78. https://doi.org/10.1016/j.bbr.2014.05.046 (2014 ).

    Post.

    Google Scholar.

  • Melancia, F. & & Trezza, V. Modelling delicate X syndrome in the lab setting: a behavioral point of view. Behav. Brain Res. 350, 149– 163. https://doi.org/10.1016/j.bbr.2018.04.042 (2018 ).

    Post.

    Google Scholar.

  • Hamilton, S. M. et al. Fmr1 and Nlgn3 knockout rats: unique tools for examining autism spectrum conditions. Behav. Neurosci. 128, 103– 109. https://doi.org/10.1037/a0035988 (2014 ).

    Post.

    Google Scholar.

  • Tian, Y. et al. Loss of FMRP impaired hippocampal long-lasting plasticity and spatial knowing in rats. Front. Mol. Neurosci. 10, 269. https://doi.org/10.3389/fnmol.2017.00269 (2017 ).

    Post.

    Google Scholar.

  • Kazdoba, T. M., Leach, P. T., Silverman, J. L. & & Crawley, J. N. Designing delicate X syndrome in the Fmr1 knockout mouse. Intract. Unusual Dis. Res. 3, 118– 133. https://doi.org/10.5582/irdr.2014.01024 (2014 ).

    Post.

    Google Scholar.

  • Hodges, S. L. et al. A single early-life seizure leads to long-lasting behavioral modifications in the adult Fmr1 knockout mouse. Epilepsy Res. 157, 106193. https://doi.org/10.1016/j.eplepsyres.2019.106193 (2019 ).

    Post.

    Google Scholar.

  • Wong, H. et al. Sexually dimorphic patterns in electroencephalography power spectrum and autism-related habits in a rat design of delicate X syndrome. Neurobiol. Dis. 146, 105118. https://doi.org/10.1016/j.nbd.2020.105118 (2020 ).

    Post.

    Google Scholar.

  • Kosillo, P. & & Bateup, H. S. Dopaminergic dysregulation in syndromic autism spectrum conditions: insights from hereditary mouse designs. Front. Neural Circuits 15, 700968. https://doi.org/10.3389/fncir.2021.700968 (2021 ).

    Post.

    Google Scholar.

  • Gerasimou, G. P., Aggelopoulou, T. C., Costa, D. C. & & Gotzamani-Psarrakou, A. Molecular imaging (SPECT and FAMILY PET )in the examination of clients with motion conditions. Nucl. Medication. Rev. Cent. East Eur. 9, 147– 153 (2006 ).

    Google Scholar.

  • Palermo, G. & & Ceravolo, R. Molecular imaging of the dopamine transporter. Cells 8, 872. https://doi.org/10.3390/cells8080872 (2019 ).

    Post.

    Google Scholar.

  • Tatsch, K. & & Poepperl, G. Nigrostriatal dopamine terminal imaging with dopamine transporter SPECT: an upgrade. J. Nucl. Medication. 54, 1331. https://doi.org/10.2967/jnumed.112.105379 (2013 ).

    Post.

    Google Scholar.

  • Postuma, R. B. et al. MDS medical diagnostic requirements for Parkinson’s illness. Mov. Disord. 30, 1591– 1601. https://doi.org/10.1002/mds.26424 (2015 ).

    Post.

    Google Scholar.

  • McKeith, I. G. et al. Medical diagnosis and management of dementia with Lewy bodies: 4th agreement report of the DLB Consortium. Neurology 89, 88– 100. https://doi.org/10.1212/WNL.0000000000004058 (2017 ).

    Post.

    Google Scholar.

  • Paval, D. & & Miclutia, I. V. The dopamine hypothesis of autism spectrum condition reviewed: present status and future potential customers. Dev. Neurosci. 43, 73– 83. https://doi.org/10.1159/000515751 (2021 ).

    Post.

    Google Scholar.

  • Nakamura, K. et al. Brain serotonin and dopamine transporter bindings in grownups with high-functioning autism. Arch. Gen. Psychiatry 67, 59– 68. https://doi.org/10.1001/archgenpsychiatry.2009.137 (2010 ).

    Post.

    Google Scholar.

  • Makkonen, I., Riikonen, R., Kokki, H., Airaksinen, M. M. & & Kuikka, J. T. Serotonin and dopamine transporter binding in kids with autism identified by SPECT. Dev. Medication. Kid Neurol. 50, 593– 597. https://doi.org/10.1111/j.1469-8749.2008.03027.x (2008 ).

    Post.

    Google Scholar.

  • Zürcher, N. R. et al. A synchronised [(11)C] raclopride positron emission tomography and practical magnetic resonance imaging examination of striatal dopamine binding in autism. Transl. Psychiatry 11, 33– 33. https://doi.org/10.1038/s41398-020-01170-0 (2021 ).

    Post.

    Google Scholar.

  • Smith, L. N. et al. Vulnerable X psychological retardation protein controls synaptic and behavioral plasticity to duplicated drug administration. Nerve Cell 82, 645– 658. https://doi.org/10.1016/j.neuron.2014.03.028 (2014 ).

    Post.

    Google Scholar.

  • Huebschman, J. L. et al. The function of the dorsal striatum in a mouse design for delicate X syndrome: behavioral and dendritic spinal column evaluation. Brain Res 1795, 148060. https://doi.org/10.1016/j.brainres.2022.148060 (2022 ).

    Post.

    Google Scholar.

  • Fish, E. W. et al. Modifications in level of sensitivity of benefit and motor habits to dopaminergic, glutamatergic, and cholinergic drugs in a mouse design of delicate X syndrome. PLoS One 8, e77896. https://doi.org/10.1371/journal.pone.0077896 (2013 ).

    Post.
    ADS.

    Google Scholar.

  • Ventura, R., Pascucci, T., Catania, M. V., Musumeci, S. A. & & Puglisi-Allegra, S. Item acknowledgment disability in Fmr1 knockout mice is reversed by amphetamine: participation of dopamine in the median prefrontal cortex. Behav. Pharmacol. 15, 433– 442. https://doi.org/10.1097/00008877-200409000-00018 (2004 ).

    Post.

    Google Scholar.

  • Leo, D. et al. Noticable hyperactivity, cognitive dysfunctions, and BDNF dysregulation in dopamine transporter knock-out rats. J. Neurosci. 38, 1959– 1972. https://doi.org/10.1523/JNEUROSCI.1931-17.2018 (2018 ).

    Post.

    Google Scholar.

  • Gainetdinov, R. R. et al. Function of serotonin in the paradoxical relaxing impact of psychostimulants on hyperactivity. Science 283, 397– 401. https://doi.org/10.1126/science.283.5400.397 (1999 ).

    Post.
    ADS.

    Google Scholar.

  • Yamazaki, M., Arai, T., Yarimizu, J. & & Matsumoto, M. 5-HT5A receptor villain ASP5736 ameliorates a number of unusual habits in an Fmr1-targeted transgenic male rat design of delicate X syndrome. Int. J. Neuropsychopharmacol. 25, 786– 793. https://doi.org/10.1093/ijnp/pyac041 (2022 ).

    Post.

    Google Scholar.

  • Uutela, M. et al. Unique behavioral and cellular actions to fluoxetine in the mouse design for Vulnerable X syndrome. Front. Cell Neurosci. 8, 150. https://doi.org/10.3389/fncel.2014.00150 (2014 ).

    Post.

    Google Scholar.

  • Lozano, R., Hare, E. B. & & Hagerman, R. J. Modulation of the GABAergic path for the treatment of delicate X syndrome. Neuropsychiatr. Dis. Deal with. 10, 1769– 1779. https://doi.org/10.2147/NDT.S42919 (2014 ).

    Post.

    Google Scholar.

  • Olmos-Serrano, J. L., Corbin, J. G. & & Burns, M. P. The GABA( A) receptor agonist THIP ameliorates particular behavioral deficits in the mouse design of delicate X syndrome. Dev. Neurosci. 33, 395– 403. https://doi.org/10.1159/000332884 (2011 ).

    Post.

    Google Scholar.

  • Shim, S. H. et al. Increased levels of plasma brain-derived neurotrophic aspect (BDNF) in kids with attention deficit-hyperactivity condition (ADHD). Prog. Neuropsychopharmacol. Biol. Psychiatry 32, 1824– 1828. https://doi.org/10.1016/j.pnpbp.2008.08.005 (2008 ).

    Post.

    Google Scholar.

  • Uutela, M. et al. Decrease of BDNF expression in Fmr1 knockout mice gets worse cognitive deficits however enhances hyperactivity and sensorimotor deficits. Genes Brain Behav. 11, 513– 523. https://doi.org/10.1111/j.1601-183X.2012.00784.x (2012 ).

    Post.

    Google Scholar.

  • Qiu, G., Chen, S., Guo, J., Wu, J. & & Yi, Y. H. Alpha-asarone enhances striatal cholinergic function and locomotor hyperactivity in Fmr1 knockout mice. Behav. Brain Res. 312, 212– 218. https://doi.org/10.1016/j.bbr.2016.06.024 (2016 ).

    Post.

    Google Scholar.

  • Ventura, R., Pascucci, T., Catania, M. V., Musumeci, S. A. & & Puglisi-Allegra, S. Item acknowledgment disability in Fmr1 knockout mice is reversed by amphetamine: participation of dopamine in the median prefrontal cortex. Behav. Pharmacol. 15, A28 (2004 ).

    Post.

    Google Scholar.

  • Chao, O. Y. et al. Transformed dopaminergic paths and restorative results of intranasal dopamine in 2 unique mouse designs of autism. Mol. Brain 13, 111. https://doi.org/10.1186/s13041-020-00649-7 (2020 ).

    Post.

    Google Scholar.

  • Jiang, A. et al. Sex distinctions in dopamine receptor signaling in fmr1 knockout mice: a pilot research study. Brain Sci. 11, 1398. https://doi.org/10.3390/brainsci11111398 (2021 ).

    Post.

    Google Scholar.

  • Fulks, J. L. et al. Dopamine release and uptake problems and behavioral changes observed in mice that design delicate X psychological retardation syndrome. ACS Chem. Neurosci. 1, 679– 690. https://doi.org/10.1021/cn100032f (2010 ).

    Post.

    Google Scholar.

  • Zhu, X., Ottenheimer, D. & & DiLeone, R. J. Activity of D1/2 receptor revealing nerve cells in the nucleus accumbens controls running, mobility, and food consumption. Front. Behav. Neurosci. 10, 66. https://doi.org/10.3389/fnbeh.2016.00066 (2016 ).

    Post.

    Google Scholar.

  • Wang, H. et al. FMRP functions as a crucial messenger for dopamine modulation in the forebrain. Nerve Cell 59, 634– 647. https://doi.org/10.1016/j.neuron.2008.06.027 (2008 ).

    Post.

    Google Scholar.

  • Wang, H., Kim, S. S. & & Zhuo, M. Responsibility of delicate x psychological retardation protein in dopaminergic stimulation-induced synapse-associated protein synthesis and subsequent & &#x 3b1;- Amino-3-hydroxyl-5-methyl-4-isoxazole-4-propionate (AMPA) receptor internalization *. J. Biol. Chem. 285, 21888– 21901. https://doi.org/10.1074/jbc.M110.116293 (2010 ).

    Post.

    Google Scholar.

  • Paul, K., Venkitaramani, D. V. & & Cox, C. L. Dampened dopamine-mediated neuromodulation in prefrontal cortex of delicate X mice. J. Physiol. 591, 1133– 1143. https://doi.org/10.1113/jphysiol.2012.241067 (2013 ).

    Post.

    Google Scholar.

  • Ott, T. & & Nieder, A. Dopamine and Cognitive Control in Prefrontal Cortex. Trends Cogn. Sci. 23, 213– 234. https://doi.org/10.1016/j.tics.2018.12.006 (2019 ).

    Post.

    Google Scholar.

  • DiCarlo, G. E. et al. Autism-linked dopamine transporter anomaly modifies striatal dopamine neurotransmission and dopamine-dependent habits. J. Clin. Invest. 129, 3407– 3419. https://doi.org/10.1172/JCI127411 (2019 ).

    Post.
    MathSciNet.

    Google Scholar.

  • Napolitano, A. et al. Sex distinctions in autism spectrum condition: diagnostic, neurobiological, and behavioral functions. Front Psychiatry 13, 889636. https://doi.org/10.3389/fpsyt.2022.889636 (2022 ).

    Post.

    Google Scholar.

  • - Advertisement -
    Pet News 2Day
    Pet News 2Dayhttps://petnews2day.com
    About the editor Hey there! I'm proud to be the editor of Pet News 2Day. With a lifetime of experience and a genuine love for animals, I bring a wealth of knowledge and passion to my role. Experience and Expertise Animals have always been a central part of my life. I'm not only the owner of a top-notch dog grooming business in, but I also have a diverse and happy family of my own. We have five adorable dogs, six charming cats, a wise old tortoise, four adorable guinea pigs, two bouncy rabbits, and even a lively flock of chickens. Needless to say, my home is a haven for animal love! Credibility What sets me apart as a credible editor is my hands-on experience and dedication. Through running my grooming business, I've developed a deep understanding of various dog breeds and their needs. I take pride in delivering exceptional grooming services and ensuring each furry client feels comfortable and cared for. Commitment to Animal Welfare But my passion extends beyond my business. Fostering dogs until they find their forever homes is something I'm truly committed to. It's an incredibly rewarding experience, knowing that I'm making a difference in their lives. Additionally, I've volunteered at animal rescue centers across the globe, helping animals in need and gaining a global perspective on animal welfare. Trusted Source I believe that my diverse experiences, from running a successful grooming business to fostering and volunteering, make me a credible editor in the field of pet journalism. I strive to provide accurate and informative content, sharing insights into pet ownership, behavior, and care. My genuine love for animals drives me to be a trusted source for pet-related information, and I'm honored to share my knowledge and passion with readers like you.
    -Advertisement-

    Latest Articles

    -Advertisement-

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here
    Captcha verification failed!
    CAPTCHA user score failed. Please contact us!