Thursday, May 9, 2024
Thursday, May 9, 2024
HomePet Industry NewsPet Travel NewsDoes modulation of tau hyperphosphorylation symbolize an inexpensive therapeutic technique for Alzheimer’s...

Does modulation of tau hyperphosphorylation symbolize an inexpensive therapeutic technique for Alzheimer’s illness? From preclinical research to the medical trials

Date:

Related stories

-Advertisement-spot_img
-- Advertisment --
- Advertisement -
  • Grundke-Iqbal I, Iqbal Okay, Quinlan M, Tung YC, Zaidi MS, Wisniewski HM. Microtubule-associated protein tau. A part of Alzheimer paired helical filaments. J Biol Chem. 1986;261:6084–9.

    CAS 
    PubMed 

    Google Scholar
     

  • Wang JZ, Xia YY, Grundke-Iqbal I, Iqbal Okay. Abnormal hyperphosphorylation of tau: websites, regulation, and molecular mechanism of neurofibrillary degeneration. J Alzheimer’s Dis. 2013;33:S123–139.


    Google Scholar
     

  • Iqbal Okay, Grundke-Iqbal I, Zaidi T, Merz PA, Wen GY, Shaikh SS, et al. Defective mind microtubule meeting in Alzheimer’s illness. Lancet. 1986;2:421–6.

    CAS 
    PubMed 

    Google Scholar
     

  • Iqbal Okay, Grundke-Iqbal I, Smith AJ, George L, Tung YC, Zaidi T. Identification and localization of a tau peptide to paired helical filaments of Alzheimer illness. Proc Natl Acad Sci USA. 1989;86:5646–50.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee VM, Balin BJ, Otvos L Jr, Trojanowski JQ. A68: a serious subunit of paired helical filaments and derivatized types of regular Tau. Science. 1991;251:675–8.

    CAS 
    PubMed 

    Google Scholar
     

  • Novak M, Kabat J, Wischik CM. Molecular characterization of the minimal protease resistant tau unit of the Alzheimer’s illness paired helical filament. EMBO J. 1993;12:365–70.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grundke-Iqbal I, Iqbal Okay, Tung YC, Quinlan M, Wisniewski HM, Binder LI. Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci USA. 1986;83:4913–7.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nelson PT, Alafuzoff I, Bigio EH, Bouras C, Braak H, Cairns NJ, et al. Correlation of Alzheimer illness neuropathologic modifications with cognitive standing: a overview of the literature. J Neuropathol Exp Neurol. 2012;71:362–81.

    PubMed 

    Google Scholar
     

  • Braak H, Braak E. Neuropathological stageing of Alzheimer-related modifications. Acta Neuropathol. 1991;82:239–59.

    CAS 
    PubMed 

    Google Scholar
     

  • Alafuzoff I, Iqbal Okay, Friden H, Adolfsson R, Winblad B. Histopathological standards for progressive dementia problems: clinical-pathological correlation and classification by multivariate knowledge evaluation. Acta Neuropathol. 1987;74:209–25.

    CAS 
    PubMed 

    Google Scholar
     

  • Arriagada PV, Growdon JH, Hedley-Whyte ET, Hyman BT. Neurofibrillary tangles however not senile plaques parallel period and severity of Alzheimer’s illness. Neurology. 1992;42:631–9.

    CAS 
    PubMed 

    Google Scholar
     

  • Elahi FM, Miller BL. A clinicopathological strategy to the analysis of dementia. Nat Rev Neurol. 2017;13:457–76.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Therriault J, Zimmer ER, Benedet AL, Pascoal TA, Gauthier S, Rosa-Neto P. Staging of Alzheimer’s illness: previous, current, and future views. Trends Mol Med. 2022;28:726–741.

    CAS 
    PubMed 

    Google Scholar
     

  • Ossenkoppele R, Hansson O. Towards medical utility of tau PET tracers for diagnosing dementia as a result of Alzheimer’s illness. Alzheimers Dement. 2021;17:1998–2008.

    PubMed 

    Google Scholar
     

  • Wolters EE, Ossenkoppele R, Verfaillie SCJ, Coomans EM, Timmers T, Visser D, et al. Regional [(18)F]flortaucipir PET is extra intently related to illness severity than CSF p-tau in Alzheimer’s illness. Eur J Nucl Med Mol Imaging. 2020;47:2866–78.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • La Joie R, Bejanin A, Fagan AM, Ayakta N, Baker SL, Bourakova V, et al. Associations between [(18)F]AV1451 tau PET and CSF measures of tau pathology in a medical pattern. Neurology. 2018;90:e282–e290.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cho H, Choi JY, Hwang MS, Kim YJ, Lee HM, Lee HS, et al. In vivo cortical spreading sample of tau and amyloid within the Alzheimer illness spectrum. Ann Neurol. 2016;80:247–58.

    CAS 
    PubMed 

    Google Scholar
     

  • Scholl M, Lockhart SN, Schonhaut DR, O’Neil JP, Janabi M, Ossenkoppele R, et al. PET Imaging of Tau Deposition within the Aging Human Brain. Neuron. 2016;89:971–82.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qiang L, Sun X, Austin TO, Muralidharan H, Jean DC, Liu M, et al. Tau Does Not Stabilize Axonal Microtubules however Rather Enables Them to Have Long Labile Domains. Curr Biol. 2018;28:2181–2189.e2184.

    CAS 
    PubMed 

    Google Scholar
     

  • Dehmelt L, Halpain S. The MAP2/Tau household of microtubule-associated proteins. Genome Biol. 2005;6:204.

    PubMed 

    Google Scholar
     

  • Meier S, Bell M, Lyons DN, Rodriguez-Rivera J, Ingram A, Fontaine SN, et al. Pathological Tau Promotes Neuronal Damage by Impairing Ribosomal Function and Decreasing Protein Synthesis. J Neurosci. 2016;36:1001–7.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hamdane M, Bretteville A, Sambo AV, Schindowski Okay, Begard S, Delacourte A, et al. p25/Cdk5-mediated retinoblastoma phosphorylation is an early occasion in neuronal cell demise. J Cell Sci. 2005;118:1291–8.

    CAS 
    PubMed 

    Google Scholar
     

  • Qu MH, Li H, Tian R, Nie CL, Liu Y, Han BS, et al. Neuronal tau induces DNA conformational modifications noticed by atomic power microscopy. Neuroreport. 2004;15:2723–7.

    CAS 
    PubMed 

    Google Scholar
     

  • Qi H, Cantrelle FX, Benhelli-Mokrani H, Smet-Nocca C, Buee L, Lippens G, et al. Nuclear magnetic resonance spectroscopy characterization of interplay of Tau with DNA and its regulation by phosphorylation. Biochemistry. 2015;54:1525–33.

    CAS 
    PubMed 

    Google Scholar
     

  • Frost B, Hemberg M, Lewis J, Feany MB. Tau promotes neurodegeneration by means of international chromatin rest. Nat Neurosci. 2014;17:357–66.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Camero S, Benitez MJ, Barrantes A, Ayuso JM, Cuadros R, Avila J, et al. Tau protein gives DNA with thermodynamic and structural options that are just like these present in histone-DNA advanced. J Alzheimer’s Dis. 2014;39:649–60.

    CAS 

    Google Scholar
     

  • Brandt R. The tau proteins in neuronal progress and growth. Front Biosci. 1996;1:d118–130.

    CAS 
    PubMed 

    Google Scholar
     

  • DeVos SL, Hyman BT. Tau on the Crossroads between Neurotoxicity and Neuroprotection. Neuron. 2017;94:703–4.

    CAS 
    PubMed 

    Google Scholar
     

  • Pevalova M, Filipcik P, Novak M, Avila J, Iqbal Okay. Post-translational modifications of tau protein. Bratisl Lek Listy. 2006;107:346–53.

    CAS 
    PubMed 

    Google Scholar
     

  • Gorantla NV, Chinnathambi S. Tau Protein Squired by Molecular Chaperones During Alzheimer’s Disease. J Mol Neurosci. 2018;66:356–68.

    CAS 
    PubMed 

    Google Scholar
     

  • Jiang S, Bhaskar Okay. Degradation and Transmission of Tau by Autophagic-Endolysosomal Networks and Potential Therapeutic Targets for Tauopathy. Front Mol Neurosci. 2020;13:586731.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ahmadi S, Zhu S, Sharma R, Wilson DJ, Kraatz HB. Interaction of steel ions with tau protein. The case for a metal-mediated tau aggregation. J Inorg Biochem. 2019;194:44–51.

    CAS 
    PubMed 

    Google Scholar
     

  • Chiti F, Dobson CM. Protein Misfolding, Amyloid Formation, and Human Disease: A Summary of Progress Over the Last Decade. Annu Rev Biochem. 2017;86:27–68.

    CAS 
    PubMed 

    Google Scholar
     

  • Mamun AA, Uddin MS, Mathew B, Ashraf GM. Toxic tau: structural origins of tau aggregation in Alzheimer’s illness. Neural Regen Res. 2020;15:1417–20.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Iqbal Okay, Liu F, Gong CX. Tau and neurodegenerative illness: the story to this point. Nat Rev Neurol. 2016;12:15–27.

    CAS 
    PubMed 

    Google Scholar
     

  • Iqbal Okay, Liu F, Gong CX. Recent developments with tau-based drug discovery. Expert Opin Drug Disco. 2018;13:399–410.

    CAS 

    Google Scholar
     

  • Goedert M, Spillantini MG, Jakes R, Rutherford D, Crowther RA. Multiple isoforms of human microtubule-associated protein tau: sequences and localization in neurofibrillary tangles of Alzheimer’s illness. Neuron. 1989;3:519–26.

    CAS 
    PubMed 

    Google Scholar
     

  • Morishima-Kawashima M, Hasegawa M, Takio Okay, Suzuki M, Yoshida H, Titani Okay, et al. Proline-directed and non-proline-directed phosphorylation of PHF-tau. J Biol Chem. 1995;270:823–9.

    CAS 
    PubMed 

    Google Scholar
     

  • Hanger DP, Byers HL, Wray S, Leung KY, Saxton MJ, Seereeram A, et al. Novel phosphorylation websites in tau from Alzheimer mind assist a task for casein kinase 1 in illness pathogenesis. J Biol Chem. 2007;282:23645–54.

    CAS 
    PubMed 

    Google Scholar
     

  • Hasegawa M, Morishima-Kawashima M, Takio Okay, Suzuki M, Titani Okay, Ihara Y. Protein sequence and mass spectrometric analyses of tau within the Alzheimer’s illness mind. J Biol Chem. 1992;267:17047–54.

    CAS 
    PubMed 

    Google Scholar
     

  • Alonso AC, Zaidi T, Grundke-Iqbal I, Iqbal Okay. Role of abnormally phosphorylated tau within the breakdown of microtubules in Alzheimer illness. Proc Natl Acad Sci USA. 1994;91:5562–6.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kopke E, Tung YC, Shaikh S, Alonso AC, Iqbal Okay, Grundke-Iqbal I. Microtubule-associated protein tau. Abnormal phosphorylation of a non-paired helical filament pool in Alzheimer illness. J Biol Chem. 1993;268:24374–84.

    CAS 
    PubMed 

    Google Scholar
     

  • Despres C, Di J, Cantrelle FX, Li Z, Huvent I, Chambraud B, et al. Major Differences between the Self-Assembly and Seeding Behavior of Heparin-Induced and in Vitro Phosphorylated Tau and Their Modulation by Potential Inhibitors. ACS Chem Biol. 2019;14:1363–79.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shi Y, Zhang W, Yang Y, Murzin AG, Falcon B, Kotecha A, et al. Structure-based classification of tauopathies. Nature. 2021;598:359–63.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Scheres SH, Zhang W, Falcon B, Goedert M. Cryo-EM buildings of tau filaments. Curr Opin Struct Biol. 2020;64:17–25.

    CAS 
    PubMed 

    Google Scholar
     

  • Samimi N, Sharma G, Kimura T, Matsubara T, Huo A, Chiba Okay, et al. Distinct phosphorylation profiles of tau in brains of sufferers with totally different tauopathies. Neurobiol Aging. 2021;108:72–79.

    CAS 
    PubMed 

    Google Scholar
     

  • Rawat P, Sehar U, Bisht J, Selman A, Culberson J, Reddy PH. Phosphorylated Tau in Alzheimer’s Disease and Other Tauopathies. Int J Mol Sci. 2022;23:12841.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kitoka Okay, Skrabana R, Gasparik N, Hritz J, Jaudzems Okay. NMR Studies of Tau Protein in Tauopathies. Front Mol Biosci. 2021;8:761227.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jadhav S, Avila J, Scholl M, Kovacs GG, Kovari E, Skrabana R, et al. A walk by means of tau therapeutic methods. Acta Neuropathol Commun. 2019;7:22.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chang CW, Shao E, Mucke L. Tau: Enabler of numerous mind problems and goal of quickly evolving therapeutic methods. Science. 2021;371:eabb8255.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo Y, Li S, Zeng L-H, Tan J. Tau-targeting remedy in Alzheimer’s illness: essential advances and future alternatives. Ageing Neurodegener Dis. 2022;2:11.


    Google Scholar
     

  • Sutherland C. What Are the bona fide GSK3 Substrates? Int J Alzheimers Dis. 2011;2011:505607.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boyle WJ, Smeal T, Defize LH, Angel P, Woodgett JR, Karin M, et al. Activation of protein kinase C decreases phosphorylation of c-Jun at websites that negatively regulate its DNA-binding exercise. Cell. 1991;64:573–84.

    CAS 
    PubMed 

    Google Scholar
     

  • Beals CR, Sheridan CM, Turck CW, Gardner P, Crabtree GR. Nuclear export of NF-ATc enhanced by glycogen synthase kinase-3. Science. 1997;275:1930–4.

    CAS 
    PubMed 

    Google Scholar
     

  • Cho JH, Johnson GV. Primed phosphorylation of tau at Thr231 by glycogen synthase kinase 3beta (GSK3beta) performs a essential function in regulating tau’s skill to bind and stabilize microtubules. J Neurochem. 2004;88:349–58.

    CAS 
    PubMed 

    Google Scholar
     

  • Zaoui Okay, Benseddik Okay, Daou P, Salaun D, Badache A. ErbB2 receptor controls microtubule seize by recruiting ACF7 to the plasma membrane of migrating cells. Proc Natl Acad Sci USA. 2010;107:18517–22.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dajani R, Fraser E, Roe SM, Yeo M, Good VM, Thompson V, et al. Structural foundation for recruitment of glycogen synthase kinase 3beta to the axin-APC scaffold advanced. EMBO J. 2003;22:494–501.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Frame S, Cohen P, Biondi RM. A standard phosphate binding web site explains the distinctive substrate specificity of GSK3 and its inactivation by phosphorylation. Mol Cell. 2001;7:1321–7.

    CAS 
    PubMed 

    Google Scholar
     

  • Yin L, Wang J, Klein PS, Lazar MA. Nuclear receptor Rev-erbalpha is a essential lithium-sensitive part of the circadian clock. Science. 2006;311:1002–5.

    CAS 
    PubMed 

    Google Scholar
     

  • Woodgett JR. Molecular cloning and expression of glycogen synthase kinase-3/issue A. EMBO J. 1990;9:2431–8.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang F, Phiel CJ, Spece L, Gurvich N, Klein PS. Inhibitory phosphorylation of glycogen synthase kinase-3 (GSK-3) in response to lithium. Evidence for autoregulation of GSK-3. J Biol Chem. 2003;278:33067–77.

    CAS 
    PubMed 

    Google Scholar
     

  • Singh TJ, Haque N, Grundke-Iqbal I, Iqbal Okay. Rapid Alzheimer-like phosphorylation of tau by the synergistic actions of non-proline-dependent protein kinases and GSK-3. FEBS Lett. 1995;358:267–72.

    CAS 
    PubMed 

    Google Scholar
     

  • Polakis P. Casein kinase 1: a Wnt’er of disconnect. Curr Biol. 2002;12:R499–R501.

    CAS 
    PubMed 

    Google Scholar
     

  • Lovestone S, Reynolds CH, Latimer D, Davis DR, Anderton BH, Gallo JM, et al. Alzheimer’s disease-like phosphorylation of the microtubule-associated protein tau by glycogen synthase kinase-3 in transfected mammalian cells. Curr Biol. 1994;4:1077–86.

    CAS 
    PubMed 

    Google Scholar
     

  • Wagner U, Utton M, Gallo JM, Miller CC. Cellular phosphorylation of tau by GSK-3 beta influences tau binding to microtubules and microtubule organisation. J Cell Sci. 1996;109:1537–43.

    CAS 
    PubMed 

    Google Scholar
     

  • Sang H, Lu Z, Li Y, Ru B, Wang W, Chen J. Phosphorylation of tau by glycogen synthase kinase 3beta in intact mammalian cells influences the soundness of microtubules. Neurosci Lett. 2001;312:141–4.

    CAS 
    PubMed 

    Google Scholar
     

  • Sperbera BR, Leight S, Goedert M, Lee V-Y. Glycogen synthase kinase-3β phosphorylates tau protein at a number of websites in intact cells. Neurosci Lett. 1995;197:149–53.


    Google Scholar
     

  • Lovestone S, Hartley CL, Pearce J, Anderton BH. Phosphorylation of tau by glycogen synthase kinase-3 beta in intact mammalian cells: the results on the organization and stability of microtubules. Neuroscience. 1996;73:1145–57.

    CAS 
    PubMed 

    Google Scholar
     

  • Cruz JC, Tseng HC, Goldman JA, Shih H, Tsai LH. Aberrant Cdk5 activation by p25 triggers pathological occasions resulting in neurodegeneration and neurofibrillary tangles. Neuron. 2003;40:471–83.

    CAS 
    PubMed 

    Google Scholar
     

  • Lopes JP, Agostinho P. Cdk5: multitasking between physiological and pathological situations. Prog Neurobiol. 2011;94:49–63.

    CAS 
    PubMed 

    Google Scholar
     

  • Zhang J, Li H, Yabut O, Fitzpatrick H, D’Arcangelo G, Herrup Okay. Cdk5 suppresses the neuronal cell cycle by disrupting the E2F1-DP1 advanced. J Neurosci. 2010;30:5219–28.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim D, Frank CL, Dobbin MM, Tsunemoto RK, Tu W, Peng PL, et al. Deregulation of HDAC1 by p25/Cdk5 in neurotoxicity. Neuron. 2008;60:803–17.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chang KH, Vincent F, Shah Okay. Deregulated Cdk5 triggers aberrant activation of cell cycle kinases and phosphatases inducing neuronal demise. J Cell Sci. 2012;125:5124–37.

    CAS 
    PubMed 

    Google Scholar
     

  • Dhavan R, Tsai LH. A decade of CDK5. Nat Rev Mol Cell Biol. 2001;2:749–59.

    CAS 
    PubMed 

    Google Scholar
     

  • Lee MS, Kwon YT, Li M, Peng J, Friedlander RM, Tsai LH. Neurotoxicity induces cleavage of p35 to p25 by calpain. Nature. 2000;405:360–4.

    CAS 
    PubMed 

    Google Scholar
     

  • Kusakawa G, Saito T, Onuki R, Ishiguro Okay, Kishimoto T, Hisanaga S. Calpain-dependent proteolytic cleavage of the p35 cyclin-dependent kinase 5 activator to p25. J Biol Chem. 2000;275:17166–72.

    CAS 
    PubMed 

    Google Scholar
     

  • Engmann O, Giese KP. Crosstalk between Cdk5 and GSK3beta: Implications for Alzheimer’s Disease. Front Mol Neurosci. 2009;2:2.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Origlia N, Arancio O, Domenici L, Yan SS. MAPK, beta-amyloid and synaptic dysfunction: the function of RAGE. Expert Rev Neurother. 2009;9:1635–45.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cuadrado A, Nebreda AR. Mechanisms and capabilities of p38 MAPK signalling. Biochem J. 2010;429:403–17.

    CAS 
    PubMed 

    Google Scholar
     

  • Falcicchia C, Tozzi F, Arancio O, Watterson DM, Origlia N. Involvement of p38 MAPK in Synaptic Function and Dysfunction. Int J Mol Sci. 2020;21:5624.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goedert M, Hasegawa M, Jakes R, Lawler S, Cuenda A, Cohen P. Phosphorylation of microtubule-associated protein tau by stress-activated protein kinases. FEBS Lett. 1997;409:57–62.

    CAS 
    PubMed 

    Google Scholar
     

  • Zhu X, Rottkamp CA, Boux H, Takeda A, Perry G, Smith MA. Activation of p38 kinase hyperlinks tau phosphorylation, oxidative stress, and cell cycle-related occasions in Alzheimer illness. J Neuropathol Exp Neurol. 2000;59:880–8.

    CAS 
    PubMed 

    Google Scholar
     

  • Becker W, Weber Y, Wetzel Okay, Eirmbter Okay, Tejedor FJ, Joost HG. Sequence traits, subcellular localization, and substrate specificity of DYRK-related kinases, a novel household of twin specificity protein kinases. J Biol Chem. 1998;273:25893–902.

    CAS 
    PubMed 

    Google Scholar
     

  • Liu F, Liang Z, Wegiel J, Hwang YW, Iqbal Okay, Grundke-Iqbal I, et al. Overexpression of Dyrk1A contributes to neurofibrillary degeneration in Down syndrome. FASEB J. 2008;22:3224–33.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ryoo SR, Jeong HK, Radnaabazar C, Yoo JJ, Cho HJ, Lee HW, et al. DYRK1A-mediated hyperphosphorylation of Tau. A practical hyperlink between Down syndrome and Alzheimer illness. J Biol Chem. 2007;282:34850–7.

    CAS 
    PubMed 

    Google Scholar
     

  • Trinczek B, Brajenovic M, Ebneth A, Drewes G. MARK4 is a novel microtubule-associated proteins/microtubule affinity-regulating kinase that binds to the mobile microtubule community and to centrosomes. J Biol Chem. 2004;279:5915–23.

    CAS 
    PubMed 

    Google Scholar
     

  • Gu GJ, Lund H, Wu D, Blokzijl A, Classon C, von Euler G, et al. Role of particular person MARK isoforms in phosphorylation of tau at Ser(2)(6)(2) in Alzheimer’s illness. Neuromol Med. 2013;15:458–69.

    CAS 

    Google Scholar
     

  • Drubin DG, Nelson WJ. Origins of cell polarity. Cell. 1996;84:335–44.

    CAS 
    PubMed 

    Google Scholar
     

  • Tournebize R, Heald R, Hyman A. Role of chromosomes in meeting of meiotic and mitotic spindles. Prog Cell Cycle Res. 1997;3:271–84.

    CAS 
    PubMed 

    Google Scholar
     

  • Oba T, Saito T, Asada A, Shimizu S, Iijima KM, Ando Okay. Microtubule affinity-regulating kinase 4 with an Alzheimer’s disease-related mutation promotes tau accumulation and exacerbates neurodegeneration. J Biol Chem. 2020;295:17138–47.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Naz F, Islam A, Ahmad F, Hassan MI. Atypical PKC phosphorylates microtubule affinity-regulating kinase 4 in vitro. Mol Cell Biochem. 2015;410:223–8.

    CAS 
    PubMed 

    Google Scholar
     

  • Saito T, Oba T, Shimizu S, Asada A, Iijima KM, Ando Okay. Cdk5 will increase MARK4 exercise and augments pathological tau accumulation and toxicity by means of tau phosphorylation at Ser262. Hum Mol Genet. 2019;28:3062–71.

    CAS 
    PubMed 

    Google Scholar
     

  • Le Beau MM, Westbrook CA, Diaz MO, Rowley JD. Evidence for 2 distinct c-src loci on human chromosomes 1 and 20. Nature. 1984;312:70–71.

    PubMed 

    Google Scholar
     

  • Parsons SJ, Parsons JT. Src household kinases, key regulators of sign transduction. Oncogene. 2004;23:7906–9.

    CAS 
    PubMed 

    Google Scholar
     

  • Lee G, Newman ST, Gard DL, Band H, Panchamoorthy G. Tau interacts with src-family non-receptor tyrosine kinases. J Cell Sci. 1998;111:3167–77.

    CAS 
    PubMed 

    Google Scholar
     

  • Williamson R, Scales T, Clark BR, Gibb G, Reynolds CH, Kellie S, et al. Rapid tyrosine phosphorylation of neuronal proteins together with tau and focal adhesion kinase in response to amyloid-beta peptide publicity: involvement of Src household protein kinases. J Neurosci. 2002;22:10–20.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee G, Thangavel R, Sharma VM, Litersky JM, Bhaskar Okay, Fang SM, et al. Phosphorylation of tau by fyn: implications for Alzheimer’s illness. J Neurosci. 2004;24:2304–12.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang JY, Ledley F, Goff S, Lee R, Groner Y, Baltimore D. The mouse c-abl locus: molecular cloning and characterization. Cell. 1984;36:349–56.

    CAS 
    PubMed 

    Google Scholar
     

  • Heisterkamp N, Groffen J, Stephenson JR, Spurr NK, Goodfellow PN, Solomon E, et al. Chromosomal localization of human mobile homologues of two viral oncogenes. Nature. 1982;299:747–9.

    CAS 
    PubMed 

    Google Scholar
     

  • Jhanwar SC, Neel BG, Hayward WS, Chaganti RS. Localization of the mobile oncogenes ABL, SIS, and FES on human germ-line chromosomes. Cytogenet Cell Genet. 1984;38:73–5.

    CAS 
    PubMed 

    Google Scholar
     

  • Van Etten RA, Jackson P, Baltimore D. The mouse kind IV c-abl gene product is a nuclear protein, and activation of remodeling skill is related to cytoplasmic localization. Cell. 1989;58:669–78.

    PubMed 

    Google Scholar
     

  • Hantschel O, Superti-Furga G. Regulation of the c-Abl and Bcr-Abl tyrosine kinases. Nat Rev Mol Cell Biol. 2004;5:33–44.

    CAS 
    PubMed 

    Google Scholar
     

  • Derkinderen P, Scales TM, Hanger DP, Leung Okay-Y, Byers HL, Ward MA, et al. Tyrosine 394 is phosphorylated in Alzheimer’s paired helical filament tau and in fetal tau with c-Abl because the candidate tyrosine kinase. J Neurosci. 2005;25:6584–93.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cancino GI, Perez de Arce Okay, Castro PU, Toledo EM, von Bernhardi R, Alvarez AR. c-Abl tyrosine kinase modulates tau pathology and Cdk5 phosphorylation in AD transgenic mice. Neurobiol Aging. 2011;32:1249–61.

    CAS 
    PubMed 

    Google Scholar
     

  • Zukerberg LR, Patrick GN, Nikolic M, Humbert S, Wu CL, Lanier LM, et al. Cables hyperlinks Cdk5 and c-Abl and facilitates Cdk5 tyrosine phosphorylation, kinase upregulation, and neurite outgrowth. Neuron. 2000;26:633–46.

    CAS 
    PubMed 

    Google Scholar
     

  • Ho GJ, Hashimoto M, Adame A, Izu M, Alford MF, Thal LJ, et al. Altered p59Fyn kinase expression accompanies illness development in Alzheimer’s illness: implications for its practical function. Neurobiol Aging. 2005;26:625–35.

    CAS 
    PubMed 

    Google Scholar
     

  • Bhaskar Okay, Yen SH, Lee G. Disease-related modifications in tau have an effect on the interplay between Fyn and Tau. J Biol Chem. 2005;280:35119–25.

    CAS 
    PubMed 

    Google Scholar
     

  • Amano M, Fukata Y, Kaibuchi Okay. Regulation and capabilities of Rho-associated kinase. Exp Cell Res. 2000;261:44–51.

    CAS 
    PubMed 

    Google Scholar
     

  • Chen J, Sun Z, Jin M, Tu Y, Wang S, Yang X, et al. Inhibition of AGEs/RAGE/Rho/ROCK pathway suppresses non-specific neuroinflammation by regulating BV2 microglial M1/M2 polarization by means of the NF-kappaB pathway. J Neuroimmunol. 2017;305:108–14.

    CAS 
    PubMed 

    Google Scholar
     

  • Mueller BK, Mack H, Teusch N. Rho kinase, a promising drug goal for neurological problems. Nat Rev Drug Disco. 2005;4:387–98.

    CAS 

    Google Scholar
     

  • Koch JC, Tatenhorst L, Roser AE, Saal KA, Tonges L, Lingor P. ROCK inhibition in fashions of neurodegeneration and its potential for medical translation. Pharm Ther. 2018;189:1–21.

    CAS 

    Google Scholar
     

  • Gao Y, Yan Y, Fang Q, Zhang N, Kumar G, Zhang J, et al. The Rho kinase inhibitor fasudil attenuates Abeta(1-42)-induced apoptosis through the ASK1/JNK sign pathway in main cultures of hippocampal neurons. Metab Brain Dis. 2019;34:1787–801.

    CAS 
    PubMed 

    Google Scholar
     

  • Amano M, Kaneko T, Maeda A, Nakayama M, Ito M, Yamauchi T, et al. Identification of Tau and MAP2 as novel substrates of Rho-kinase and myosin phosphatase. J Neurochem. 2003;87:780–90.

    CAS 
    PubMed 

    Google Scholar
     

  • Hennequin LF, Allen J, Breed J, Curwen J, Fennell M, Green TP, et al. N-(5-chloro-1,3-benzodioxol-4-yl)-7-[2-(4-methylpiperazin-1-yl)ethoxy]-5- (tetrahydro-2H-pyran-4-yloxy)quinazolin-4-amine, a novel, extremely selective, orally out there, dual-specific c-Src/Abl kinase inhibitor. J Med Chem. 2006;49:6465–88.

  • Green TP, Fennell M, Whittaker R, Curwen J, Jacobs V, Allen J, et al. Preclinical anticancer exercise of the potent, oral Src inhibitor AZD0530. Mol Oncol. 2009;3:248–61.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jakobsson E, Arguello-Miranda O, Chiu SW, Fazal Z, Kruczek J, Nunez-Corrales S, et al. Towards a Unified Understanding of Lithium Action in Basic Biology and its Significance for Applied Biology. J Membr Biol. 2017;250:587–604.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ryves WJ, Harwood AJ. Lithium inhibits glycogen synthase kinase-3 by competitors for magnesium. Biochem Biophys Res Commun. 2001;280:720–5.

    CAS 
    PubMed 

    Google Scholar
     

  • Freland L, Beaulieu JM. Inhibition of GSK3 by lithium, from single molecules to signaling networks. Front Mol Neurosci. 2012;5:14.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • De-Paula VJ, Forlenza OV. Lithium modulates a number of tau kinases with distinct results in cortical and hippocampal neurons in keeping with focus ranges. Naunyn-Schmiedeberg’s Arch Pharmacol. 2022;395:105–13.

    CAS 

    Google Scholar
     

  • Salomoni P, Calabretta B. Targeted therapies and autophagy: new insights from persistent myeloid leukemia. Autophagy. 2009;5:1050–1.

    CAS 
    PubMed 

    Google Scholar
     

  • Weisberg E, Manley P, Mestan J, Cowan-Jacob S, Ray A, Griffin JD. AMN107 (nilotinib): a novel and selective inhibitor of BCR-ABL. Br J Cancer. 2006;94:1765–9.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pagan FL, Hebron ML, Wilmarth B, Torres-Yaghi Y, Lawler A, Mundel EE, et al. Pharmacokinetics and pharmacodynamics of a single dose Nilotinib in people with Parkinson’s illness. Pharm Res Perspect. 2019;7:e00470.

    CAS 

    Google Scholar
     

  • Pagan FL, Hebron ML, Wilmarth B, Torres-Yaghi Y, Lawler A, Mundel EE, et al. Nilotinib Effects on Safety, Tolerability, and Potential Biomarkers in Parkinson Disease: A Phase 2 Randomized Clinical Trial. JAMA Neurol. 2020;77:309–17.

    PubMed 

    Google Scholar
     

  • Nishioka H, Tooi N, Isobe T, Nakatsuji N, Aiba Okay. BMS-708163 and Nilotinib restore synaptic dysfunction in human embryonic stem cell-derived Alzheimer’s illness fashions. Sci Rep. 2016;6:33427.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu J, Xu X, Zheng L, Mo J, Jin X, Bao Y. Nilotinib inhibits microglia-mediated neuroinflammation to guard towards dopaminergic neuronal demise in Parkinson’s illness fashions. Int Immunopharmacol. 2021;99:108025.

    CAS 
    PubMed 

    Google Scholar
     

  • Fowler AJ, Hebron M, Balaraman Okay, Shi W, Missner AA, Greenzaid JD, et al. Discoidin Domain Receptor 1 is a therapeutic goal for neurodegenerative ailments. Hum Mol Genet. 2020;29:2882–98.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martinez A, Alonso M, Castro A, Pérez C, Moreno FJ. First non-ATP aggressive glycogen synthase kinase 3 beta (GSK-3beta) inhibitors: thiadiazolidinones (TDZD) as potential medicine for the therapy of Alzheimer’s illness. J Med Chem. 2002;45:1292–9.

    CAS 
    PubMed 

    Google Scholar
     

  • Domínguez JM, Fuertes A, Orozco L, del Monte-Millán M, Delgado E, Medina M. Evidence for irreversible inhibition of glycogen synthase kinase-3β by tideglusib. J Biol Chem. 2012;287:893–904.

    PubMed 

    Google Scholar
     

  • Noori MS, Bhatt PM, Courreges MC, Ghazanfari D, Cuckler C, Orac CM, et al. Identification of a novel selective and potent inhibitor of glycogen synthase kinase-3. Am J Physiol Cell Physiol. 2019;317:C1289–C1303.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sereno L, Coma M, Rodriguez M, Sanchez-Ferrer P, Sanchez MB, Gich I, et al. A novel GSK-3beta inhibitor reduces Alzheimer’s pathology and rescues neuronal loss in vivo. Neurobiol Dis. 2009;35:359–67.

    CAS 
    PubMed 

    Google Scholar
     

  • Luna-Medina R, Cortes-Canteli M, Sanchez-Galiano S, Morales-Garcia JA, Martinez A, Santos A, et al. NP031112, a thiadiazolidinone compound, prevents irritation and neurodegeneration below excitotoxic situations: potential therapeutic function in mind problems. J Neurosci. 2007;27:5766–76.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Griebel G, Stemmelin J, Lopez-Grancha M, Boulay D, Boquet G, Slowinski F, et al. The selective GSK3 inhibitor, SAR502250, shows neuroprotective exercise and attenuates behavioral impairments in fashions of neuropsychiatric signs of Alzheimer’s illness in rodents. Sci Rep. 2019;9:18045.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Noble W, Planel E, Zehr C, Olm V, Meyerson J, Suleman F, et al. Inhibition of glycogen synthase kinase-3 by lithium correlates with lowered tauopathy and degeneration in vivo. Proc Natl Acad Sci USA. 2005;102:6990–5.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bhat R, Xue Y, Berg S, Hellberg S, Ormo M, Nilsson Y, et al. Structural insights and organic results of glycogen synthase kinase 3-specific inhibitor AR-A014418. J Biol Chem. 2003;278:45937–45.

    CAS 
    PubMed 

    Google Scholar
     

  • Onishi T, Iwashita H, Uno Y, Kunitomo J, Saitoh M, Kimura E, et al. A novel glycogen synthase kinase-3 inhibitor 2-methyl-5-(3-{4-[(S)-methylsulfinyl]phenyl}-1-benzofuran-5-yl)-1,3,4-oxadiazole decreases tau phosphorylation and ameliorates cognitive deficits in a transgenic mannequin of Alzheimer’s illness. J Neurochem. 2011;119:1330–40.

    CAS 
    PubMed 

    Google Scholar
     

  • Kitazawa M, Oddo S, Yamasaki TR, Green KN, LaFerla FM. Lipopolysaccharide-induced irritation exacerbates tau pathology by a cyclin-dependent kinase 5-mediated pathway in a transgenic mannequin of Alzheimer’s illness. J Neurosci. 2005;25:8843–53.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maphis N, Jiang S, Xu G, Kokiko-Cochran ON, Roy SM, Van Eldik LJ, et al. Selective suppression of the alpha isoform of p38 MAPK rescues late-stage tau pathology. Alzheimers Res Ther. 2016;8:54.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hebron ML, Javidnia M, Moussa CE-H. Tau clearance improves astrocytic operate and mind glutamate-glutamine cycle. J Neurol Sci. 2018;391:90–99.

    CAS 
    PubMed 

    Google Scholar
     

  • Melchior B, Mittapalli GK, Lai C, Duong-Polk Okay, Stewart J, Guner B, et al. Tau pathology discount with SM07883, a novel, potent, and selective oral DYRK1A inhibitor: A possible therapeutic for Alzheimer’s illness. Aging Cell. 2019;18:e13000.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Branca C, Shaw DM, Belfiore R, Gokhale V, Shaw AY, Foley C, et al. Dyrk1 inhibition improves Alzheimer’s disease-like pathology. Aging Cell. 2017;16:1146–54.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Velazquez R, Meechoovet B, Ow A, Foley C, Shaw A, Smith B, et al. Chronic Dyrk1 Inhibition Delays the Onset of AD-Like Pathology in 3xTg-AD Mice. Mol Neurobiol. 2019;56:8364–75.

    CAS 
    PubMed 

    Google Scholar
     

  • Schweig JE, Yao H, Coppola Okay, Jin C, Crawford F, Mullan M, et al. Spleen tyrosine kinase (SYK) blocks autophagic Tau degradation in vitro and in vivo. J Biol Chem. 2019;294:13378–95.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hamano T, Shirafuji N, Yen SH, Yoshida H, Kanaan NM, Hayashi Okay, et al. Rho-kinase ROCK inhibitors cut back oligomeric tau protein. Neurobiol Aging. 2020;89:41–54.

    CAS 
    PubMed 

    Google Scholar
     

  • Liu F, Liang Z, Gong CX. Hyperphosphorylation of tau and protein phosphatases in Alzheimer illness. Panminerva Med. 2006;48:97–108.

    CAS 
    PubMed 

    Google Scholar
     

  • Liu F, Grundke-Iqbal I, Iqbal Okay, Gong CX. Contributions of protein phosphatases PP1, PP2A, PP2B and PP5 to the regulation of tau phosphorylation. Eur J Neurosci. 2005;22:1942–50.

    PubMed 

    Google Scholar
     

  • Goedert M, Jakes R, Qi Z, Wang JH, Cohen P. Protein phosphatase 2A is the main enzyme in mind that dephosphorylates tau protein phosphorylated by proline-directed protein kinases or cyclic AMP-dependent protein kinase. J Neurochem. 1995;65:2804–7.

    CAS 
    PubMed 

    Google Scholar
     

  • Gong CX, Singh TJ, Grundke-Iqbal I, Iqbal Okay. Phosphoprotein phosphatase actions in Alzheimer illness mind. J Neurochem. 1993;61:921–7.

    CAS 
    PubMed 

    Google Scholar
     

  • Gong CX, Shaikh S, Wang JZ, Zaidi T, Grundke-Iqbal I, Iqbal Okay. Phosphatase exercise towards abnormally phosphorylated tau: lower in Alzheimer illness mind. J Neurochem. 1995;65:732–8.

    CAS 
    PubMed 

    Google Scholar
     

  • Liu F, Iqbal Okay, Grundke-Iqbal I, Rossie S, Gong CX. Dephosphorylation of tau by protein phosphatase 5: impairment in Alzheimer’s illness. J Biol Chem. 2005;280:1790–6.

    CAS 
    PubMed 

    Google Scholar
     

  • Sontag E, Luangpirom A, Hladik C, Mudrak I, Ogris E, Speciale S, et al. Altered expression ranges of the protein phosphatase 2A ABalphaC enzyme are related to Alzheimer illness pathology. J Neuropathol Exp Neurol. 2004;63:287–301.

    CAS 
    PubMed 

    Google Scholar
     

  • Liu F, Grundke-Iqbal I, Iqbal Okay, Oda Y, Tomizawa Okay, Gong CX. Truncation and activation of calcineurin A by calpain I in Alzheimer illness mind. J Biol Chem. 2005;280:37755–62.

    CAS 
    PubMed 

    Google Scholar
     

  • Janssens V, Goris J. Protein phosphatase 2A: a extremely regulated household of serine/threonine phosphatases implicated in cell progress and signalling. Biochem J. 2001;353:417–39.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shi Y. Serine/threonine phosphatases: mechanism by means of construction. Cell. 2009;139:468–84.

    CAS 
    PubMed 

    Google Scholar
     

  • Tanimukai H, Grundke-Iqbal I, Iqbal Okay. Up-regulation of inhibitors of protein phosphatase-2A in Alzheimer’s illness. Am J Pathol. 2005;166:1761–71.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shentu YP, Huo Y, Feng XL, Gilbert J, Zhang Q, Liuyang ZY, et al. CIP2A Causes Tau/APP Phosphorylation, Synaptopathy, and Memory Deficits in Alzheimer’s Disease. Cell Rep. 2018;24:713–23.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qian W, Shi J, Yin X, Iqbal Okay, Grundke-Iqbal I, Gong CX, et al. PP2A regulates tau phosphorylation straight and in addition not directly through activating GSK-3beta. J Alzheimer’s Dis: JAD. 2010;19:1221–9.

    CAS 
    PubMed 

    Google Scholar
     

  • Wang Y, Yang R, Gu J, Yin X, Jin N, Xie S, et al. Cross discuss between PI3K-AKT-GSK-3beta and PP2A pathways determines tau hyperphosphorylation. Neurobiol Aging. 2015;36:188–200.

    PubMed 

    Google Scholar
     

  • Corcoran NM, Martin D, Hutter-Paier B, Windisch M, Nguyen T, Nheu L, et al. Sodium selenate particularly prompts PP2A phosphatase, dephosphorylates tau and reverses reminiscence deficits in an Alzheimer’s illness mannequin. J Clin Neurosci. 2010;17:1025–33.

    CAS 
    PubMed 

    Google Scholar
     

  • Ahmed T, Van der Jeugd A, Caillierez R, Buee L, Blum D, D’Hooge R, et al. Chronic Sodium Selenate Treatment Restores Deficits in Cognition and Synaptic Plasticity in a Murine Model of Tauopathy. Front Mol Neurosci. 2020;13:570223.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jin N, Zhu H, Liang X, Huang W, Xie Q, Xiao P, et al. Sodium selenate activated Wnt/beta-catenin signaling and repressed amyloid-beta formation in a triple transgenic mouse mannequin of Alzheimer’s illness. Exp Neurol. 2017;297:36–49.

    CAS 
    PubMed 

    Google Scholar
     

  • van Eersel J, Ke YD, Liu X, Delerue F, Kril JJ, Gotz J, et al. Sodium selenate mitigates tau pathology, neurodegeneration, and practical deficits in Alzheimer’s illness fashions. Proc Natl Acad Sci USA. 2010;107:13888–93.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zaki MO, El-Desouky S, Elsherbiny DA, Salama M, Azab SS. Glimepiride mitigates tauopathy and neuroinflammation in P301S transgenic mice: function of AKT/GSK3beta signaling. Inflammopharmacology. 2022;30:1871–90.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao S, Fan Z, Zhang X, Li Z, Shen T, Li Okay, et al. Metformin Attenuates Tau Pathology in Tau-Seeded PS19 Mice. Neurotherapeutics. 2023;20:452–63.

    CAS 
    PubMed 

    Google Scholar
     

  • Barini E, Antico O, Zhao Y, Asta F, Tucci V, Catelani T, et al. Metformin promotes tau aggregation and exacerbates irregular habits in a mouse mannequin of tauopathy. Mol Neurodegener. 2016;11:16.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kickstein E, Krauss S, Thornhill P, Rutschow D, Zeller R, Sharkey J, et al. Biguanide metformin acts on tau phosphorylation through mTOR/protein phosphatase 2A (PP2A) signaling. Proc Natl Acad Sci USA. 2010;107:21830–5.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sedjahtera A, Gunawan L, Bray L, Hung LW, Parsons J, Okamura N, et al. Targeting metals rescues the phenotype in an animal mannequin of tauopathy. Metallomics. 2018;10:1339–47.

    CAS 
    PubMed 

    Google Scholar
     

  • Beauchamp LC, Liu XM, Sedjahtera A, Bogeski M, Vella LJ, Bush AI, et al. S-Adenosylmethionine Rescues Cognitive Deficits within the rTg4510 Animal Model by Stabilizing Protein Phosphatase 2A and Reducing Phosphorylated Tau. J Alzheimer’s Dis: JAD. 2020;77:1705–15.

    CAS 
    PubMed 

    Google Scholar
     

  • Sontag E, Nunbhakdi-Craig V, Sontag JM, Diaz-Arrastia R, Ogris E, Dayal S, et al. Protein phosphatase 2A methyltransferase hyperlinks homocysteine metabolism with tau and amyloid precursor protein regulation. J Neurosci. 2007;27:2751–9.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wei W, Liu YH, Zhang CE, Wang Q, Wei Z, Mousseau DD, et al. Folate/vitamin-B12 prevents persistent hyperhomocysteinemia-induced tau hyperphosphorylation and reminiscence deficits in aged rats. J Alzheimer’s Dis: JAD. 2011;27:639–50.

    CAS 
    PubMed 

    Google Scholar
     

  • Xiong Y, Jing XP, Zhou XW, Wang XL, Yang Y, Sun XY, et al. Zinc induces protein phosphatase 2A inactivation and tau hyperphosphorylation by means of Src dependent PP2A (tyrosine 307) phosphorylation. Neurobiol Aging. 2013;34:745–56.

    CAS 
    PubMed 

    Google Scholar
     

  • Fagan SG, Bechet S, Dev KK. Fingolimod Rescues Memory and Improves Pathological Hallmarks within the 3xTg-AD Model of Alzheimer’s Disease. Mol Neurobiol. 2022;59:1882–95.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Laurent C, Eddarkaoui S, Derisbourg M, Leboucher A, Demeyer D, Carrier S, et al. Beneficial results of caffeine in a transgenic mannequin of Alzheimer’s disease-like tau pathology. Neurobiol Aging. 2014;35:2079–90.

    CAS 
    PubMed 

    Google Scholar
     

  • Tan X, Liang Z, Li Y, Zhi Y, Yi L, Bai S, et al. Isoorientin, a GSK-3beta inhibitor, rescues synaptic dysfunction, spatial reminiscence deficits and attenuates pathological development in APP/PS1 mannequin mice. Behav Brain Res. 2021;398:112968.

    CAS 
    PubMed 

    Google Scholar
     

  • Chen Q, Tu Y, Mak S, Chen J, Lu J, Chen C, et al. Discovery of a novel small molecule PT109 with multi-targeted results towards Alzheimer’s illness in vitro and in vivo. Eur J Pharm. 2020;883:173361.

    CAS 

    Google Scholar
     

  • Halkina T, Henderson JL, Lin EY, Himmelbauer MK, Jones JH, Nevalainen M, et al. Discovery of Potent and Brain-Penetrant Tau Tubulin Kinase 1 (TTBK1) Inhibitors that Lower Tau Phosphorylation In Vivo. J Med Chem. 2021;64:6358–80.

    CAS 
    PubMed 

    Google Scholar
     

  • Dillon GM, Henderson JL, Bao C, Joyce JA, Calhoun M, Amaral B, et al. Acute inhibition of the CNS-specific kinase TTBK1 considerably lowers tau phosphorylation at a number of illness related websites. PLoS One. 2020;15:e0228771.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ashour NH, El-Tanbouly DM, El Sayed NS, Khattab MM. Roflumilast ameliorates cognitive deficits in a mouse mannequin of amyloidogenesis and tauopathy: Involvement of nitric oxide standing, Abeta extrusion transporter ABCB1, and reversal by PKA inhibitor H89. Prog Neuropsychopharmacol Biol Psychiatry. 2021;111:110366.

    CAS 
    PubMed 

    Google Scholar
     

  • Yoneyama M, Shiba T, Hasebe S, Umeda Okay, Yamaguchi T, Ogita Okay. Lithium promotes neuronal restore and ameliorates depression-like habits following trimethyltin-induced neuronal loss within the dentate gyrus. PLoS One. 2014;9:e87953.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Caccamo A, Oddo S, Tran LX, LaFerla FM. Lithium reduces tau phosphorylation however not A beta or working reminiscence deficits in a transgenic mannequin with each plaques and tangles. Am J Pathol. 2007;170:1669–75.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nakashima H, Ishihara T, Suguimoto P, Yokota O, Oshima E, Kugo A, et al. Chronic lithium therapy decreases tau lesions by selling ubiquitination in a mouse mannequin of tauopathies. Acta Neuropathol. 2005;110:547–56.

    CAS 
    PubMed 

    Google Scholar
     

  • Kaufman AC, Salazar SV, Haas LT, Yang J, Kostylev MA, Jeng AT, et al. Fyn inhibition rescues established reminiscence and synapse loss in Alzheimer mice. Ann Neurol. 2015;77:953–71.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chang Y, Yao Y, Ma R, Wang Z, Hu J, Wu Y, et al. Dl-3-n-Butylphthalide Reduces Cognitive Deficits and Alleviates Neuropathology in P301S Tau Transgenic Mice. Front Neurosci. 2021;15:620176.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oddo S, Caccamo A, Shepherd JD, Murphy MP, Golde TE, Kayed R, et al. Triple-transgenic mannequin of Alzheimer’s illness with plaques and tangles: intracellular Abeta and synaptic dysfunction. Neuron. 2003;39:409–21.

    CAS 
    PubMed 

    Google Scholar
     

  • Lewis J, Dickson DW, Lin WL, Chisholm L, Corral A, Jones G, et al. Enhanced neurofibrillary degeneration in transgenic mice expressing mutant tau and APP. Science. 2001;293:1487–91.

    CAS 
    PubMed 

    Google Scholar
     

  • Terwel D, Lasrado R, Snauwaert J, Vandeweert E, Van Haesendonck C, Borghgraef P, et al. Changed conformation of mutant Tau-P301L underlies the moribund tauopathy, absent in progressive, nonlethal axonopathy of Tau-4R/2N transgenic mice. J Biol Chem. 2005;280:3963–73.

    CAS 
    PubMed 

    Google Scholar
     

  • Yoshiyama Y, Higuchi M, Zhang B, Huang SM, Iwata N, Saido TC, et al. Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse mannequin. Neuron. 2007;53:337–51.

    CAS 
    PubMed 

    Google Scholar
     

  • Ramsden M, Kotilinek L, Forster C, Paulson J, McGowan E, SantaCruz Okay, et al. Age-dependent neurofibrillary tangle formation, neuron loss, and reminiscence impairment in a mouse mannequin of human tauopathy (P301L). J Neurosci. 2005;25:10637–47.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Santacruz Okay, Lewis J, Spires T, Paulson J, Kotilinek L, Ingelsson M, et al. Tau suppression in a neurodegenerative mouse mannequin improves reminiscence operate. Science. 2005;309:476–81.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ishihara T, Hong M, Zhang B, Nakagawa Y, Lee MK, Trojanowski JQ, et al. Age-dependent emergence and development of a tauopathy in transgenic mice overexpressing the shortest human tau isoform. Neuron. 1999;24:751–62.

    CAS 
    PubMed 

    Google Scholar
     

  • Andorfer C, Kress Y, Espinoza M, de Silva R, Tucker KL, Barde YA, et al. Hyperphosphorylation and aggregation of tau in mice expressing regular human tau isoforms. J Neurochem. 2003;86:582–90.

    CAS 
    PubMed 

    Google Scholar
     

  • Zilka N, Korenova M, Novak M. Misfolded tau protein and illness modifying pathways in transgenic rodent fashions of human tauopathies. Acta Neuropathol. 2009;118:71–86.

    CAS 
    PubMed 

    Google Scholar
     

  • Perez DI, Gil C, Martinez A. Protein kinases CK1 and CK2 as new targets for neurodegenerative ailments. Med Res Rev. 2011;31:924–54.

    CAS 
    PubMed 

    Google Scholar
     

  • Ribe EM, Perez M, Puig B, Gich I, Lim F, Cuadrado M, et al. Accelerated amyloid deposition, neurofibrillary degeneration and neuronal loss in double mutant APP/tau transgenic mice. Neurobiol Dis. 2005;20:814–22.

    CAS 
    PubMed 

    Google Scholar
     

  • Huang W, Percie du Sert N, Vollert J, Rice ASC. General Principles of Preclinical Study Design. Handb Exp Pharm. 2020;257:55–69.


    Google Scholar
     

  • del Ser T, Steinwachs KC, Gertz HJ, Andres MV, Gomez-Carrillo B, Medina M, et al. Treatment of Alzheimer’s illness with the GSK-3 inhibitor tideglusib: a pilot research. J Alzheimer’s Dis. 2013;33:205–15.


    Google Scholar
     

  • Lovestone S, Boada M, Dubois B, Hull M, Rinne JO, Huppertz HJ, et al. A part II trial of tideglusib in Alzheimer’s illness. J Alzheimer’s Dis. 2015;45:75–88.

    CAS 

    Google Scholar
     

  • Tolosa E, Litvan I, Hoglinger GU, Burn D, Lees A, Andres MV, et al. A part 2 trial of the GSK-3 inhibitor tideglusib in progressive supranuclear palsy. Mov Disord. 2014;29:470–8.

    CAS 
    PubMed 

    Google Scholar
     

  • Hampel H, Ewers M, Burger Okay, Annas P, Mortberg A, Bogstedt A, et al. Lithium trial in Alzheimer’s illness: a randomized, single-blind, placebo-controlled, multicenter 10-week research. J Clin Psychiatry. 2009;70:922–31.

    CAS 
    PubMed 

    Google Scholar
     

  • Macdonald A, Briggs Okay, Poppe M, Higgins A, Velayudhan L, Lovestone S. A feasibility and tolerability research of lithium in Alzheimer’s illness. Int J Geriatr Psychiatry. 2008;23:704–11.

    PubMed 

    Google Scholar
     

  • Forlenza OV, Diniz BS, Radanovic M, Santos FS, Talib LL, Gattaz WF. Disease-modifying properties of long-term lithium therapy for amnestic gentle cognitive impairment: randomised managed trial. Br J Psychiatry. 2011;198:351–6.

    PubMed 

    Google Scholar
     

  • Devanand DP, Strickler JG, Huey ED, Crocco E, Forester BP, Husain MM, et al. Lithium Treatment for Agitation in Alzheimer’s illness (Lit-AD): Clinical rationale and research design. Contemp Clin Trials. 2018;71:33–39.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Devanand DP, Crocco E, Forester BP, Husain MM, Lee S, Vahia IV, et al. Low Dose Lithium Treatment of Behavioral Complications in Alzheimer’s Disease: Lit-AD Randomized Clinical Trial. Am J Geriatr Psychiatry. 2022;30:32–42.

    CAS 
    PubMed 

    Google Scholar
     

  • van Dyck CH, Nygaard HB, Chen Okay, Donohue MC, Raman R, Rissman RA, et al. Effect of AZD0530 on Cerebral Metabolic Decline in Alzheimer Disease: A Randomized Clinical Trial. JAMA Neurol. 2019;76:1219–29.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nygaard HB, Wagner AF, Bowen GS, Good SP, MacAvoy MG, Strittmatter KA, et al. A part Ib a number of ascending dose research of the security, tolerability, and central nervous system availability of AZD0530 (saracatinib) in Alzheimer’s illness. Alzheimers Res Ther. 2015;7:35.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Turner RS, Hebron ML, Lawler A, Mundel EE, Yusuf N, Starr JN, et al. Nilotinib Effects on Safety, Tolerability, and Biomarkers in Alzheimer’s Disease. Ann Neurol. 2020;88:183–94.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Malpas CB, Vivash L, Genc S, Saling MM, Desmond P, Steward C, et al. A Phase IIa Randomized Control Trial of VEL015 (Sodium Selenate) in Mild-Moderate Alzheimer’s Disease. J Alzheimer’s Dis. 2016;54:223–32.

    CAS 

    Google Scholar
     

  • Cardoso BR, Roberts BR, Malpas CB, Vivash L, Genc S, Saling MM, et al. Supranutritional Sodium Selenate Supplementation Delivers Selenium to the Central Nervous System: Results from a Randomized Controlled Pilot Trial in Alzheimer’s Disease. Neurotherapeutics. 2019;16:192–202.

    CAS 
    PubMed 

    Google Scholar
     

  • Vivash L, Malpas CB, Churilov L, Walterfang M, Brodtmann A, Piguet O, et al. A research protocol for a part II randomised, double-blind, placebo-controlled trial of sodium selenate as a disease-modifying therapy for behavioural variant frontotemporal dementia. BMJ Open. 2020;10:e040100.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vivash L, Bertram KL, Malpas CB, Marotta C, Harding IH, Kolbe S, et al. Sodium selenate as a disease-modifying therapy for progressive supranuclear palsy: protocol for a part 2, randomised, double-blind, placebo-controlled trial. BMJ Open. 2021;11:e055019.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jack CR Jr, Bennett DA, Blennow Okay, Carrillo MC, Dunn B, Haeberlein SB, et al. NIA-AA Research Framework: Toward a organic definition of Alzheimer’s illness. Alzheimers Dement. 2018;14:535–62.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Novak P, Kovacech B, Katina S, Schmidt R, Scheltens P, Kontsekova E, et al. ADAMANT: a placebo-controlled randomized part 2 research of AADvac1, an lively immunotherapy towards pathological tau in Alzheimer’s illness. Nat Aging. 2021;1:521–34.

    PubMed 

    Google Scholar
     

  • Cummings J, Lee G, Zhong Okay, Fonseca J, Taghva Okay. Alzheimer’s illness drug growth pipeline: 2021. Alzheimer’s Dement. 2021;7:e12179.


    Google Scholar
     

  • Holland D, McEvoy LK, Desikan RS, Dale AM. Alzheimer’s Disease Neuroimaging I. Enrichment and stratification for predementia Alzheimer illness medical trials. PLoS One. 2012;7:e47739.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nelson PT, Dickson DW, Trojanowski JQ, Jack CR, Boyle PA, Arfanakis Okay, et al. Limbic-predominant age-related TDP-43 encephalopathy (LATE): consensus working group report. Brain. 2019;142:1503–27.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jellinger KA, Attems J. Challenges of multimorbidity of the growing old mind: a essential update. J Neural Transm (Vienna). 2015;122:505–21.

    PubMed 

    Google Scholar
     

  • Lim YY, Jaeger J, Harrington Okay, Ashwood T, Ellis KA, Stoffler A, et al. Three-month stability of the CogState temporary battery in wholesome older adults, gentle cognitive impairment, and Alzheimer’s illness: outcomes from the Australian Imaging, Biomarkers, and Lifestyle-rate of change substudy (AIBL-ROCS). Arch Clin Neuropsychol. 2013;28:320–30.

    PubMed 

    Google Scholar
     

  • Hobart J, Cano S, Posner H, Selnes O, Stern Y, Thomas R, et al. Putting the Alzheimer’s cognitive check to the check I: conventional psychometric strategies. Alzheimers Dement. 2013;9:S4–9.

    PubMed 

    Google Scholar
     

  • Holland D, Desikan RS, Dale AM, McEvoy LK. Rates of decline in Alzheimer illness lower with age. PLoS One. 2012;7:e42325.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cummings J, Lee G, Nahed P, Kambar M, Zhong Okay, Fonseca J, et al. Alzheimer’s illness drug growth pipeline: 2022. Alzheimers Dement. 2022;8:e12295.


    Google Scholar
     

  • He Q, Liu J, Liang J, Liu X, Li W, Liu Z, et al. Towards Improvements for Penetrating the Blood-Brain Barrier-Recent Progress from a Material and Pharmaceutical Perspective. Cells. 2018;7:24.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Serenó L, Coma M, Rodriguez M, Sanchez-Ferrer P, Sánchez MB, Gich I, et al. A novel GSK-3β inhibitor reduces Alzheimer’s pathology and rescues neuronal loss in vivo. Neurobiol Dis. 2009;35:359–67.

    PubMed 

    Google Scholar
     

  • - Advertisement -
    Pet News 2Day
    Pet News 2Dayhttps://petnews2day.com
    About the editor Hey there! I'm proud to be the editor of Pet News 2Day. With a lifetime of experience and a genuine love for animals, I bring a wealth of knowledge and passion to my role. Experience and Expertise Animals have always been a central part of my life. I'm not only the owner of a top-notch dog grooming business in, but I also have a diverse and happy family of my own. We have five adorable dogs, six charming cats, a wise old tortoise, four adorable guinea pigs, two bouncy rabbits, and even a lively flock of chickens. Needless to say, my home is a haven for animal love! Credibility What sets me apart as a credible editor is my hands-on experience and dedication. Through running my grooming business, I've developed a deep understanding of various dog breeds and their needs. I take pride in delivering exceptional grooming services and ensuring each furry client feels comfortable and cared for. Commitment to Animal Welfare But my passion extends beyond my business. Fostering dogs until they find their forever homes is something I'm truly committed to. It's an incredibly rewarding experience, knowing that I'm making a difference in their lives. Additionally, I've volunteered at animal rescue centers across the globe, helping animals in need and gaining a global perspective on animal welfare. Trusted Source I believe that my diverse experiences, from running a successful grooming business to fostering and volunteering, make me a credible editor in the field of pet journalism. I strive to provide accurate and informative content, sharing insights into pet ownership, behavior, and care. My genuine love for animals drives me to be a trusted source for pet-related information, and I'm honored to share my knowledge and passion with readers like you.
    -Advertisement-

    Latest Articles

    -Advertisement-

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here
    Captcha verification failed!
    CAPTCHA user score failed. Please contact us!