Thursday, May 16, 2024
Thursday, May 16, 2024
HomePet Industry NewsPet Travel NewsClinical significance of animal designs in aging-related dementia research study

Clinical significance of animal designs in aging-related dementia research study

Date:

Related stories

-Advertisement-spot_img
-- Advertisment --
- Advertisement -
  • Alzheimer’s Association. 2020 Alzheimer’s illness realities and figures. Alzheimers Dement. 16, 391–460 (2020).

  • Sengupta, U. & Kayed, R. Amyloid β, tau, and α-synuclein aggregates in the pathogenesis, diagnosis, and rehabs for neurodegenerative illness. Prog. Neurobiol. 214, 102270 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jellinger, K. A. & Attems, J. Challenges of multimorbidity of the aging brain: a crucial update. J. Neural Transm. 122, 505–521 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Tanne, J. H. Aduhelm: approval of Alzheimer’s drug was extremely unconventional, discovers report. BMJ 380, 6 (2023).


    Google Scholar
     

  • van Dyck, C. H. et al. Lecanemab in early Alzheimer’s illness. N. Engl. J. Med. 388, 9–21 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Perry, R. J. & Hodges, J. R. Attention and executive deficits in Alzheimer’s illness. A critique. Brain 122, 383–404 (1999).

    Article 
    PubMed 

    Google Scholar
     

  • Polanco, J. C. et al. Amyloid-β and tau intricacy—towards enhanced biomarkers and targeted treatments. Nat. Rev. Neurol. 14, 22–39 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Götz, J. & Ittner, L. M. Animal designs of Alzheimer’s illness and frontotemporal dementia. Nat. Rev. Neurosci. 9, 532–544 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Dujardin, S., Colin, M. & Buee, L. Invited evaluation: animal designs of tauopathies and their ramifications for research/translation into the center. Neuropathol. Appl. Neurobiol. 41, 59–80 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jankowsky, J. L. & Zheng, H. Practical factors to consider for picking a mouse design of Alzheimer’s illness. Mol. Neurodegener. 12, 89 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schenk, D. et al. Immunization with amyloid-β attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 400, 173–177 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bard, F. et al. Peripherally administered antibodies versus amyloid β-peptide get in the main nerve system and minimize pathology in a mouse design of Alzheimer illness. Nat. Med. 6, 916–919 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • de la Torre, J. C. & Mussivand, T. Can disrupted brain microcirculation cause Alzheimer’s illness? Neurol. Res. 15, 146–153 (1993).

    Article 
    PubMed 

    Google Scholar
     

  • Grimm, A. & Eckert, A. Brain aging and neurodegeneration: from a mitochondrial perspective. J. Neurochem. 143, 418–431 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heneka, M. T. et al. Neuroinflammation in Alzheimer’s illness. Lancet Neurol. 14, 388–405 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wirths, O. & Zampar, S. Neuron loss in Alzheimer’s illness: translation in transgenic mouse designs. Int. J. Mol. Sci. 21, 8144 (2020).

  • Eimer, W. A. & Vassar, R. Neuron loss in the 5XFAD mouse design of Alzheimer’s illness associates with intraneuronal Aβ42 build-up and caspase-3 activation. Mol. Neurodegener. 8, 2 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van Eersel, J. et al. Early-start axonal pathology in an unique P301S-tau transgenic mouse design of frontotemporal lobar degeneration. Neuropathol. Appl. Neurobiol. 41, 906–925 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Hatch, R. J., Wei, Y., Xia, D. & Götz, J. Hyperphosphorylated tau triggers decreased hippocampal CA1 excitability by transferring the axon preliminary sector. Acta Neuropathol. 133, 717–730 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roy, D. S. et al. Memory retrieval by triggering engram cells in mouse designs of early Alzheimer’s illness. Nature 531, 508–512 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oh, H., Razlighi, Q. R. & Stern, Y. Multiple paths of reserve all at once present in cognitively regular older grownups. Neurology 90, e197–e205 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stern, Y., Barnes, C. A., Grady, C., Jones, R. N. & Raz, N. Brain reserve, cognitive reserve, payment, and upkeep: operationalization, credibility, and systems of cognitive strength. Neurobiol. Aging 83, 124–129 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ammassari-Teule, M. Neural payment in presymptomatic hAPP mouse designs of Alzheimer’s illness. Learn. Mem. 27, 390–394 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morrone, C. D., Lai, A. Y., Bishay, J., Hill, M. E. & McLaurin, J. Parvalbumin neuroplasticity makes up for somatostatin problems, preserving cognitive function in Alzheimer’s illness. Transl. Neurodegener. 11, 26 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Probst, A. et al. Axonopathy and amyotrophy in mice transgenic for human four-repeat tau protein. Acta Neuropathol. 99, 469–481 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Allen, B. et al. Abundant tau filaments and nonapoptotic neurodegeneration in transgenic mice revealing human P301S tau protein. J. Neurosci. 22, 9340–9351 (2002).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Santacruz, K. et al. Tau suppression in a neurodegenerative mouse design enhances memory function. Science 309, 476–481 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Götz, J., Bodea, L. G. & Goedert, M. Rodent designs for Alzheimer illness. Nat. Rev. Neurosci. 19, 583–598 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Saito, T. et al. Single App knock-in mouse designs of Alzheimer’s illness. Nat. Neurosci. 17, 661–663 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sato, K. et al. A third-generation mouse design of Alzheimer’s illness reveals early and increased cored plaque pathology made up of wild-type human amyloid β peptide. J. Biol. Chem. 297, 101004 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xia, D., Gutmann, J. M. & Götz, J. Mobility and subcellular localization of endogenous, gene-edited tau varies from that of over-expressed human wild-type and P301L mutant tau. Sci. Rep. 6, 29074 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bjorkhem, I. et al. Cholesterol homeostasis in human brain: turnover of 24S-hydroxycholesterol and proof for a cerebral origin of the majority of this oxysterol in the flow. J. Lipid Res. 39, 1594–1600 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huynh, T. V. et al. Lack of hepatic ApoE does not affect early Aβ deposition: observations from a brand-new APOE knock-in design. Mol. Neurodegener. 14, 37 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barisano, G. et al. A ‘multi-omics’ analysis of blood–brain barrier and synaptic dysfunction in APOE4 mice. J. Exp. Med. 219, e20221137 (2022).

  • Shi, Y. et al. ApoE4 significantly intensifies tau-mediated neurodegeneration in a mouse design of tauopathy. Nature 549, 523–527 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bales, K. R. et al. Human APOE isoform-dependent impacts on brain β-amyloid levels in PDAPP transgenic mice. J. Neurosci. 29, 6771–6779 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Castellano, J. M. et al. Human ApoE isoforms differentially control brain amyloid-β peptide clearance. Sci. Transl. Med. 3, 89ra57 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hou, J., Chen, Y., Grajales-Reyes, G. & Colonna, M. TREM2 reliant and independent functions of microglia in Alzheimer’s illness. Mol. Neurodegener. 17, 84 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fitz, N. F. et al. Trem2 shortage differentially impacts phenotype and transcriptome of human APOE3 and APOE4 mice. Mol. Neurodegener. 15, 41 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Humpel, C. Organotypic brain piece cultures: an evaluation. Neuroscience 305, 86–98 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fath, T., Ke, Y. D., Gunning, P., Götz, J. & Ittner, L. M. Primary assistance cultures of hippocampal and substantia nigra nerve cells. Nat. Protoc. 4, 78–85 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pir, G. J., Choudhary, B. & Mandelkow, E. Caenorhabditis elegans designs of tauopathy. FASEB J. 31, 5137–5148 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Griffin, E. F., Caldwell, K. A. & Caldwell, G. A. Genetic and medicinal discovery for Alzheimer’s illness utilizing Caenorhabditis elegans. AIR CONDITIONER Chem. Neurosci. 8, 2596–2606 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Asadzadeh, J. et al. Retromer shortage in tauopathy designs boosts the truncation and toxicity of tau. Nat. Commun. 13, 5049 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saleem, S. & Kannan, R. R. Zebrafish: an emerging real-time design system to research study Alzheimer’s illness and neurospecific drug discovery. Cell Death Discov. 4, 45 (2018).


    Google Scholar
     

  • Pang, K. et al. An App knock-in rat design for Alzheimer’s illness displaying Aβ and tau pathologies, neuronal death and cognitive problems. Cell Res. 32, 157–175 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hurley, M. J. et al. Genome sequencing variations in the Octodon degus, a non-traditional natural design of aging and Alzheimer’s illness. Front. Aging Neurosci. 14, 894994 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reid, S. J. et al. Alzheimer’s illness markers in the aged sheep (Ovis aries). Neurobiol. Aging 58, 112–119 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yan, S. et al. A huntingtin knockin pig design recapitulates functions of selective neurodegeneration in Huntington’s illness. Cell 173, 989–1002 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, S. E. et al. Production of transgenic pig as an Alzheimer’s illness design utilizing a multi-cistronic vector system. PLoS ONE 12, e0177933 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Walker, L. C. & Jucker, M. The remarkable vulnerability of human beings to Alzheimer’s illness. Trends Mol. Med. 23, 534–545 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Haque, R. U. & Levey, A. I. Alzheimer’s illness: a scientific viewpoint and future nonhuman primate research study opportunities. Proc. Natl Acad. Sci. U.S.A. 116, 26224–26229 (2019).

  • Paspalas, C. D. et al. The aged rhesus macaque manifests Braak phase III/IV Alzheimer’s-like pathology. Alzheimers Dement. 14, 680–691 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Sasaguri, H. et al. Recent advances in the modeling of Alzheimer’s illness. Front. Neurosci. 16, 807473 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yoshimatsu, S. et al. Multimodal analyses of a non-human primate design harboring mutant amyloid precursor protein transgenes driven by the human EF1α promoter. Neurosci. Res. 185, 49–61 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Seita, Y. et al. Generation of transgenic cynomolgus monkeys overexpressing the gene for amyloid-β precursor protein. J. Alzheimers Dis. 75, 45–60 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tang, M. et al. Neurological symptoms of autosomal dominant familial Alzheimer’s illness: a contrast of the released literature with the Dominantly Inherited Alzheimer Network observational research study (DIAN-OBS). Lancet Neurol. 15, 1317–1325 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lear, A. et al. Understanding them to comprehend ourselves: the value of NHP research study for translational neuroscience. Curr. Res. Neurobiol. 3, 100049 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kennedy, M. E. et al. The BACE1 inhibitor verubecestat (MK-8931) decreases CNS β-amyloid in animal designs and in Alzheimer’s illness clients. Sci. Transl. Med. 8, 363ra150 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Amin, N. D. & Pasca, S. P. Building designs of brain conditions with three-dimensional organoids. Neuron 100, 389–405 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Park, J. et al. A 3D human triculture system modeling neurodegeneration and neuroinflammation in Alzheimer’s illness. Nat. Neurosci. 21, 941–951 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fair, S. R. et al. Electrophysiological maturation of cerebral organoids associates with vibrant morphological and cellular advancement. Stem Cell Rep. 15, 855–868 (2020).

    CAS 

    Google Scholar
     

  • Sun, X. Y. et al. Generation of vascularized brain organoids to study neurovascular interactions. eLife 11, e76707 (2022).

  • Shin, N. et al. Vascularization of iNSC spheroid in a 3D spheroid-on-a-chip platform boosts neural maturation. Biotechnol. Bioeng. 119, 566–574 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Duque, A., Arellano, J. I. & Rakic, P. An evaluation of the presence of adult neurogenesis in human beings and worth of its rodent designs for neuropsychiatric illness. Mol. Psychiatry 27, 377–382 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Sloan, S. A. et al. Human astrocyte maturation recorded in 3D cerebral cortical spheroids stemmed from pluripotent stem cells. Neuron 95, 779–790 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lopez-Otin, C. & Kroemer, G. Hallmarks of health. Cell 184, 33–63 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lopez-Otin, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. Hallmarks of aging: a broadening universe. Cell 186, 243–278 (2022).

    Article 

    Google Scholar
     

  • Turturro, A., Duffy, P., Hass, B., Kodell, R. & Hart, R. Survival attributes and age-adjusted illness occurrences in C57BL/6 mice fed a typically utilized cereal-based diet plan regulated by dietary limitation. J. Gerontol. A Biol. Sci. Med. Sci. 57, B379–B389 (2002).

    Article 
    PubMed 

    Google Scholar
     

  • Blackmore, D. G. et al. Multimodal analysis of aged wild-type mice exposed to duplicated scanning ultrasound treatments shows long-lasting safety. Theranostics 8, 6233–6247 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van Praag, H., Shubert, T., Zhao, C. & Gage, F. H. Exercise boosts knowing and hippocampal neurogenesis in aged mice. J. Neurosci. 25, 8680–8685 (2005).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Blackmore, D. G. et al. Low-strength ultrasound brings back long-lasting potentiation and memory in senescent mice through pleiotropic systems consisting of NMDAR signaling. Mol. Psychiatry 26, 6975–6991 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nisbet, R. M. et al. Combined impacts of scanning ultrasound and a tau-specific single chain antibody in a tau transgenic mouse design. Brain 140, 1220–1230 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pandit, R., Leinenga, G. & Götz, J. Repeated ultrasound treatment of tau transgenic mice clears neuronal tau by autophagy and enhances behavioral functions. Theranostics 9, 3754–3767 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, G. et al. Using the capacity of inducible tau/APP transgenic mice. Neuropathol. Appl. Neurobiol. 48, e12791 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Beckmann, N., Gerard, C., Abramowski, D., Cannet, C. & Staufenbiel, M. Noninvasive magnetic resonance imaging detection of cerebral amyloid angiopathy-related microvascular changes utilizing superparamagnetic iron oxide particles in APP transgenic mouse designs of Alzheimer’s illness: application to passive Aβ immunotherapy. J. Neurosci. 31, 1023–1031 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lewis, J. et al. Neurofibrillary tangles, amyotrophy and progressive motor disruption in mice revealing mutant (P301L) tau protein. Nat. Genet. 25, 402–405 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Coninx, E. et al. Hippocampal and cortical tissue-specific epigenetic clocks suggest an increased epigenetic age in a mouse design for Alzheimer’s illness. Aging 12, 20817–20834 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gamache, J. et al. Factors aside from hTau overexpression that add to tauopathy-like phenotype in rTg4510 mice. Nat. Commun. 10, 2479 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Polanco, J. C., Hand, G. R., Briner, A., Li, C. & Götz, J. Exosomes cause endolysosomal permeabilization as an entrance by which exosomal tau seeds leave into the cytosol. Acta Neuropathol. 141, 235–256 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thal, D. R. et al. Estimation of amyloid circulation by [18F]flutemetamol animal forecasts the neuropathological stage of amyloid β-protein deposition. Acta Neuropathol. 136, 557–567 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Braak, H. & Braak, E. Staging of Alzheimer’s disease-related neurofibrillary modifications. Neurobiol. Aging 16, 271–278 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jucker, M. & Walker, L. C. Self-proliferation of pathogenic protein aggregates in neurodegenerative illness. Nature 501, 45–51 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Calignon, A. et al. Propagation of tau pathology in a design of early Alzheimer’s illness. Neuron 73, 685–697 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Asai, H. et al. Depletion of microglia and inhibition of exosome synthesis stop tau proliferation. Nat. Neurosci. 18, 1584–1593 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Clavaguera, F. et al. Brain homogenates from human tauopathies cause tau additions in mouse brain. Proc. Natl Acad. Sci. U.S.A. 110, 9535–9540 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ahmed, Z. et al. An unique in vivo design of tau proliferation with quick and progressive neurofibrillary tangle pathology: the pattern of spread is identified by connection, not distance. Acta Neuropathol. 127, 667–683 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ferris, S. H. et al. Positron emission tomography in the research study of aging and senile dementia. Neurobiol. Aging 1, 127–131 (1980).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Palop, J. J. & Mucke, L. Network irregularities and interneuron dysfunction in Alzheimer illness. Nat. Rev. Neurosci. 17, 777–792 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sheline, Y. I. et al. APOE4 allele interrupts resting state fMRI connection in the lack of amyloid plaques or reduced CSF Aβ42. J. Neurosci. 30, 17035–17040 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Palmqvist, S. et al. Earliest build-up of β-amyloid happens within the default-mode network and simultaneously impacts brain connection. Nat. Commun. 8, 1214 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zott, B., Busche, M. A., Sperling, R. A. & Konnerth, A. What occurs with the circuit in Alzheimer’s illness in mice and human beings? Annu. Rev. Neurosci. 41, 277–297 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu, H. et al. Rat brains likewise have a default mode network. Proc. Natl Acad. Sci. U.S.A. 109, 3979–3984 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Whitesell, J. D. et al. Regional, layer, and cell-type-specific connection of the mouse default mode network. Neuron 109, 545–559 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou, Y. et al. Abnormal connection in the posterior cingulate and hippocampus in early Alzheimer’s illness and moderate cognitive problems. Alzheimers Dement. 4, 265–270 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Quiroz, Y. T. et al. Hippocampal hyperactivation in presymptomatic familial Alzheimer’s illness. Ann. Neurol. 68, 865–875 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • O’Brien, J. L. et al. Longitudinal fMRI in elderly exposes loss of hippocampal activation with scientific decrease. Neurology 74, 1969–1976 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Busche, M. A. et al. Critical function of soluble amyloid-β for early hippocampal hyperactivity in a mouse design of Alzheimer’s illness. Proc. Natl Acad. Sci. U.S.A. 109, 8740–8745 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Palop, J. J. et al. Aberrant excitatory neuronal activity and countervailing improvement of repressive hippocampal circuits in mouse designs of Alzheimer’s illness. Neuron 55, 697–711 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Padmanabhan, P., Kneynsberg, A. & Götz, J. Super-resolution microscopy: a better take a look at synaptic dysfunction in Alzheimer illness. Nat. Rev. Neurosci. 22, 723–740 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tzioras, M., McGeachan, R. I., Durrant, C. S. & Spires-Jones, T. L. Synaptic degeneration in Alzheimer illness. Nat. Rev. Neurol. 19, 19–38 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Sweeney, M. D., Zhao, Z., Montagne, A., Nelson, A. R. & Zlokovic, B. V. Blood–brain barrier: from physiology to illness and back. Physiol. Rev. 99, 21–78 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pardridge, W. M. Tyrosine hydroxylase replacement in speculative Parkinson’s illness with transvascular gene treatment. NeuroRx 2, 129–138 (2005).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Neuwelt, E. et al. Strategies to advance translational research study into brain barriers. Lancet Neurol. 7, 84–96 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Golde, T. E. Open concerns for Alzheimer’s illness immunotherapy. Alzheimers Res. Ther. 6, 3 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Budd Haeberlein, S. et al. Two randomized stage 3 research studies of aducanumab in early Alzheimer’s illness. J. Prev. Alzheimers Dis. 9, 197–210 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Schneider, L. A resurrection of aducanumab for Alzheimer’s illness. Lancet Neurol. 19, 111–112 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Ayton, S. Ventricular augmentation brought on by aducanumab. Nat. Rev. Neurol. 18, 383–384 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Leinenga, G., Koh, W. K. & Götz, J. A relative research study of the impacts of aducanumab and scanning ultrasound on amyloid plaques and habits in the APP23 mouse design of Alzheimer illness. Alzheimers Res. Ther. 13, 76 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun, T. et al. Focused ultrasound with anti-pGlu3 Aβ boosts effectiveness in Alzheimer’s disease-like mice through recruitment of peripheral immune cells. J. Control. Release 336, 443–456 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kovacs, Z. I. et al. Disrupting the blood–brain barrier by focused ultrasound causes sterilized swelling. Proc. Natl Acad. Sci. U.S.A. 114, E75–E84 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McMahon, D. & Hynynen, K. Acute inflammatory reaction following increased blood–brain barrier permeability caused by focused ultrasound depends on microbubble dosage. Theranostics 7, 3989–4000 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Clausznitzer, D. et al. Quantitative systems pharmacology design for Alzheimer illness shows targeting sphingolipid dysregulation as prospective treatment choice. CPT Pharmacometrics Syst. Pharmacol. 7, 759–770 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Madrasi, K. et al. Systematic in silico analysis of scientifically checked drugs for lowering amyloid-β plaque build-up in Alzheimer’s illness. Alzheimers Dement. 17, 1487–1498 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vogel, J. W. et al. Four unique trajectories of tau deposition determined in Alzheimer’s illness. Nat. Med. 27, 871–881 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cornblath, E. J. et al. Computational modeling of tau pathology spread exposes patterns of local vulnerability and the effect of a hereditary danger aspect. Sci. Adv. 7, eabg6677 (2021).

  • Meisl, G. et al. In vivo rate-determining actions of tau seed build-up in Alzheimer’s illness. Sci. Adv. 7, eabh1448 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kunze, T., Hunold, A., Haueisen, J., Jirsa, V. & Spiegler, A. Transcranial direct existing stimulation modifications resting state practical connection: a massive brain network modeling research study. NeuroImage 140, 174–187 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Geerts, H. et al. A combined PBPK and QSP design for modeling amyloid aggregation in Alzheimer’s illness. CPT Pharmacometrics Syst. Pharmacol. (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Taubes, A. et al. Experimental and real-world proof supporting the computational repurposing of bumetanide for APOE4-associated Alzheimer’s illness. Nat. Aging 1, 932–947 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Haeno, H. et al. Computational modeling of pancreatic cancer exposes kinetics of transition recommending maximum treatment methods. Cell 148, 362–375 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Padmanabhan, P., Desikan, R. & Dixit, N. M. Modeling how antibody reactions might figure out the effectiveness of COVID-19 vaccines. Nat. Comput. Sci. 2, 123–131 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Suberbielle, E. et al. Physiologic brain activity triggers DNA double-strand breaks in nerve cells, with worsening by amyloid-β. Nat. Neurosci. 16, 613–621 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thadathil, N. et al. DNA double-strand break build-up in Alzheimer’s illness: proof from speculative designs and postmortem human brains. Mol. Neurobiol. 58, 118–131 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Rolyan, H. et al. Telomere reducing decreases Alzheimer’s illness amyloid pathology in mice. Brain 134, 2044–2056 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Shu, L. et al. Genome-large modification of 5-hydroxymenthylcytosine in a mouse design of Alzheimer’s illness. BMC Genomics 17, 381 (2016).


    Google Scholar
     

  • Cadena-del-Castillo, C. et al. Age-reliant increment of hydroxymethylation in the brain cortex in the triple-transgenic mouse design of Alzheimer’s illness. J. Alzheimers Dis. 41, 845–854 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Trishina, E. et al. Defects in mitochondrial characteristics and metabolomic signatures of developing energetic tension in mouse designs of familial Alzheimer’s illness. PLoS ONE 7, e32737 (2012).

    Article 

    Google Scholar
     

  • David, D. C. et al. Proteomic and practical analysis reveal a mitochondrial dysfunction in P301L tau transgenic mice. J. Biol. Chem. 280, 23802–23814 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ittner, L. M. et al. Parkinsonism and impaired axonal transportation in a mouse design of frontotemporal dementia. Proc. Natl Acad. Sci. U.S.A. 105, 15997–16002 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Duboff, B., Götz, J. & Feany, M. B. Tau promotes neurodegeneration through DRP1 mislocalization in vivo. Neuron 75, 618–632 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cummins, N., Tweedie, A., Zuryn, S., Bertran-Gonzalez, J. & Götz, J. Disease-associated tau hinders mitophagy by hindering parkin translocation to mitochondria. EMBO J. 38, e99360 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Evans, H. T., Benetatos, J., van Roijen, M., Bodea, L. G. & Götz, J. Decreased synthesis of ribosomal proteins in tauopathy revealed by non-canonical amino acid labelling. EMBO J. 38, e101174 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saito, T. & Saido, T. C. Neuroinflammation in mouse designs of Alzheimer’s illness. Clin. Exp. Neuroimmunol. 9, 211–218 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reinitz, F. et al. Inhibiting USP16 saves stem cell aging and memory in an Alzheimer’s design. eLife 11, e66037 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu, W. H. et al. Macroautophagy—an unique β-amyloid peptide-generating path triggered in Alzheimer’s illness. J. Cell Biol. 171, 87–98 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun, J. et al. Fecal microbiota hair transplant reduced Alzheimer’s disease-like pathogenesis in APP/PS1 transgenic mice. Transl. Psychiatry 9, 189 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dodiya, H. B. et al. Gut microbiota-driven brain Aβ amyloidosis in mice needs microglia. J. Exp. Med. 219, e20200895 (2022).

  • Seo, D. O. et al. ApoE isoform- and microbiota-dependent development of neurodegeneration in a mouse design of tauopathy. Science 379, eadd1236 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Heneka, M. T. et al. NLRP3 is triggered in Alzheimer’s illness and adds to pathology in APP/PS1 mice. Nature 493, 674–678 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiang, S. et al. Proteopathic tau primes and triggers interleukin-1β through myeloid-cell-specific MyD88- and NLRP3–ASC–inflammasome path. Cell Rep. 36, 109720 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lafay-Chebassier, C. et al. mTOR/p70S6k signalling modification by Aβ direct exposure along with in APP-PS1 transgenic designs and in clients with Alzheimer’s illness. J. Neurochem. 94, 215–225 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Caccamo, A., Majumder, S., Richardson, A., Strong, R. & Oddo, S. Molecular interaction in between mammalian target of rapamycin (mTOR), amyloid-β, and tau: impacts on cognitive problems. J. Biol. Chem. 285, 13107–13120 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dorigatti, A. O. et al. Brain cellular senescence in mouse designs of Alzheimer’s illness. Geroscience 44, 1157–1168 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, P. et al. Senolytic treatment minimizes Aβ-associated oligodendrocyte progenitor cell senescence and cognitive deficits in an Alzheimer’s illness design. Nat. Neurosci. 22, 719–728 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • - Advertisement -
    Pet News 2Day
    Pet News 2Dayhttps://petnews2day.com
    About the editor Hey there! I'm proud to be the editor of Pet News 2Day. With a lifetime of experience and a genuine love for animals, I bring a wealth of knowledge and passion to my role. Experience and Expertise Animals have always been a central part of my life. I'm not only the owner of a top-notch dog grooming business in, but I also have a diverse and happy family of my own. We have five adorable dogs, six charming cats, a wise old tortoise, four adorable guinea pigs, two bouncy rabbits, and even a lively flock of chickens. Needless to say, my home is a haven for animal love! Credibility What sets me apart as a credible editor is my hands-on experience and dedication. Through running my grooming business, I've developed a deep understanding of various dog breeds and their needs. I take pride in delivering exceptional grooming services and ensuring each furry client feels comfortable and cared for. Commitment to Animal Welfare But my passion extends beyond my business. Fostering dogs until they find their forever homes is something I'm truly committed to. It's an incredibly rewarding experience, knowing that I'm making a difference in their lives. Additionally, I've volunteered at animal rescue centers across the globe, helping animals in need and gaining a global perspective on animal welfare. Trusted Source I believe that my diverse experiences, from running a successful grooming business to fostering and volunteering, make me a credible editor in the field of pet journalism. I strive to provide accurate and informative content, sharing insights into pet ownership, behavior, and care. My genuine love for animals drives me to be a trusted source for pet-related information, and I'm honored to share my knowledge and passion with readers like you.
    -Advertisement-

    Latest Articles

    -Advertisement-

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here
    Captcha verification failed!
    CAPTCHA user score failed. Please contact us!