Thursday, May 16, 2024
Thursday, May 16, 2024
HomePet Industry NewsPet Travel NewsA microfluidic method for label-free recognition of small-sized microplastics in seawater

A microfluidic method for label-free recognition of small-sized microplastics in seawater

Date:

Related stories

-Advertisement-spot_img
-- Advertisment --
- Advertisement -
  • Isobe, A. et al. A multilevel dataset of microplastic abundance worldwide’s upper ocean and the Laurentian Great Lakes. Microplast. Nanoplast. 1, 16 (2021).

    Article 

    Google Scholar
     

  • Chatterjee, S. & Sharma, S. Microplastics in our oceans and marine health. J. Field Actions 19(2019), 54–61 (2019).


    Google Scholar
     

  • Cutroneo, L. et al. Microplastics in seawater: tasting techniques, lab methods, and recognition methods used to port environment. Environ. Sci. Pollut. Res. 27, 8938–8952 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Nguyen, B. et al. Separation and analysis of microplastics and nanoplastics in complicated ecological samples. Acc. Chem. Res. 52, 858–866 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Miller, M. E., Motti, C. A., Menendez, P. & Kroon, F. J. Efficacy of microplastic separation methods on seawater samples: Testing precision utilizing high-density polyethylene. Biol. Bull. 240, 52–66 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Prata, J. C., da Costa, J. P., Duarte, A. C. & Rocha-Santos, T. Methods for tasting and detection of microplastics in water and sediment: A critique. TrAC Trends Anal. Chem. 110, 150–159 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Schymanski, D. et al. Analysis of microplastics in drinking water and other tidy water samples with micro-Raman and micro-infrared spectroscopy: Minimum requirements and finest practice standards. Anal. Bioanal. Chem. 413, 5969–5994 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hidalgo-Ruz, V., Gutow, L., Thompson, R. C. & Thiel, M. Microplastics in the marine environment: An evaluation of the approaches utilized for recognition and metrology. Environ. Sci. Technol. 46, 3060–3075 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Sajeesh, P. & Sen, A. K. Particle separation and sorting in microfluidic gadgets: An evaluation. Microfluid Nanofluid. 17, 1–52 (2014).

    Article 

    Google Scholar
     

  • Zhang, S., Wang, Y., Onck, P. & den Toonder, J. A succinct evaluation of microfluidic particle adjustment approaches. Microfluid Nanofluid. 24, 24 (2020).

    Article 

    Google Scholar
     

  • Blevins, M. G. et al. Field-portable microplastic picking up in liquid environments: A viewpoint on emerging methods. Sensors 21, 3532 (2021).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Elsayed, A. A. et al. A microfluidic chip makes it possible for quick analysis of water microplastics by optical spectroscopy. Sci. Rep. 11, 10533 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mesquita, P., Gong, L. & Lin, Y. A low-cost microfluidic approach for microplastics recognition: Towards constant acknowledgment. Micromachines (Basel) 13, 499 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Chen, C. K. et al. A portable filtration system for the quick elimination of microplastics from ecological samples. Chem. Eng. J. 428, 132614 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Pollard, M., Hunsicker, E. & Platt, M. A tunable three-dimensional printed microfluidic resistive pulse sensing unit for the characterization of algae and microplastics. AIR CONDITIONING Sens. 5, 2578–2586 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Elsayed, A. A. et al. A microfluidic chip makes it possible for quick analysis of water microplastics by optical spectroscopy. Sci. Rep. 11, 10533 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Silva, A. B. et al. Microplastics in the environment: Challenges in analytical chemistry—An evaluation. Anal. Chim. Acta 1017, 1–19 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Crawford, C. B. & Quinn, B. 10-Microplastic recognition methods. In Microplastic Pollutants (eds Quinn, B. & Crawford, C. B.) 219–267 (Elsevier, 2017). https://doi.org/10.1016/B978-0-12-809406-8.00010-4.

    Chapter 

    Google Scholar
     

  • Ribeiro-Claro, P., Nolasco, M. M. & Araújo, C. Chapter 5-Characterization of microplastics by Raman spectroscopy. In Characterization and Analysis of Microplastics Vol. 75 (eds Rocha-Santos, T. A. P. & Duarte, A. C.) 119–151 (Elsevier, 2017).

    Chapter 

    Google Scholar
     

  • Yang, S.-J. et al. Rapid recognition of microplastic utilizing portable Raman system and additional trees algorithm. In Real-Time Photonic Measurements, Data Management, and Processing V Vol. 11555 (eds Li, M. et al.) 70–77 (SPIE, 2020).


    Google Scholar
     

  • Samuel, A. Z. et al. On picking an appropriate spectral matching approach for automated analytical applications of Raman spectroscopy. AIR CONDITIONING Omega 6, 2060–2065 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Araujo, C. F., Nolasco, M. M., Ribeiro, A. M. P. & Ribeiro-Claro, P. J. A. Identification of microplastics utilizing Raman spectroscopy: Latest advancements and future potential customers. Water Res. 142, 426–440 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sathya, R. & Abraham, A. Comparison of monitored and not being watched knowing algorithms for pattern category. Int. J. Adv. Res. Artif. Intell. 2, 34–38 (2013).

    Article 

    Google Scholar
     

  • Ramanna, S., Morozovskii, D., Swanson, S. & Bruneau, J. Machine knowing of polymer types from the spectral signature of Raman spectroscopy microplastics information. (2022).

  • Yu, S. et al. Analysis of Raman spectra by utilizing deep knowing approaches in the recognition of marine pathogens. Anal. Chem. 93, 11089–11098 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun, J. et al. Rapid recognition of salmonella serovars by utilizing Raman spectroscopy and artificial intelligence algorithm. Talanta 253, 123807 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brownlee, J. Sensitivity analysis of dataset size vs. design efficiency. In Python Machine Learning (2021).

  • Nalepa, J. & Kawulok, M. Selecting training sets for assistance vector makers: An evaluation. Artif Intell Rev 52, 857–900 (2019).

    Article 

    Google Scholar
     

  • Ramanna, S., Morozovskii, D., Swanson, S. & Bruneau, J. Machine knowing of polymer types from the spectral signature of Raman spectroscopy microplastics information. arXiv preprint arXiv:2201.05445 (2022).

  • Statnikov, A., Wang, L. & Aliferis, C. F. An extensive contrast of random forests and assistance vector makers for microarray-based cancer category. BMC Bioinform. 9, 319 (2008).

    Article 

    Google Scholar
     

  • Dong, M. et al. Raman spectra and surface area modifications of microplastics weathered under natural surroundings. Sci. Tot. Environ. 739, 139990 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Rashidi, H. H., Albahra, S., Robertson, S., Tran, N. K. & Hu, B. Common analytical principles in the monitored maker finding out arena. Front. Oncol. 13, 1130229 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lavoy, M. & Crossman, J. An unique approach for raw material elimination from samples consisting of microplastics. Environ. Pollut. 286, 117357 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cowger, W. et al. Microplastic spectral category requires an open source neighborhood: Open specy to the rescue!. Anal. Chem. 93, 7543–7548 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gillibert, R. et al. Raman tweezers for little microplastics and nanoplastics recognition in seawater. Environ. Sci. Technol. 53, 9003–9013 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yuan, F. et al. A high-efficiency mini-hydrocyclone for microplastic separation from water through air flotation. J. Water Process Eng. 49, 103084 (2022).

    Article 

    Google Scholar
     

  • Lv, D. et al. Trapping and launching of single microparticles and cells in a microfluidic chip. Electrophoresis 43, 2165 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, D. et al. Alcohol pretreatment to get rid of the disturbance of Micro additive particles in the recognition of microplastics utilizing Raman spectroscopy. Environ. Sci. Technol. 56, 12158–12168 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, S.-J. et al. Rapid recognition of microplastic utilizing portable Raman system and additional trees algorithm. In Real-time photonic measurements, information management, and processing V Vol. 11555 (eds Li, M. et al.) 115550T (SPIE, 2020).


    Google Scholar
     

  • Gonzalez, G., Roppolo, I., Pirri, C. F. & Chiappone, A. Current and emerging patterns in polymeric 3D printed microfluidic gadgets. Addit. Manuf. 55, 102867 (2022).

    CAS 

    Google Scholar
     

  • Urso, M., Ussia, M., Novotný, F. & Pumera, M. Trapping and finding nanoplastics by MXene-derived oxide microrobots. Nat. Commun. 13, 3573 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cai, H. et al. Analysis of ecological nanoplastics: Progress and obstacles. Chem. Eng. J. 410, 128208 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Xie, L., Gong, K., Liu, Y. & Zhang, L. Strategies and obstacles of recognizing nanoplastics in environment by surface-enhanced Raman spectroscopy. Environ. Sci. Technol. 57, 25–43 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Long, R. Fairness in artificial intelligence: Against incorrect positive rate equality as a step of fairness. J. Moral Philos. 19, 49–78 (2021).

    Article 

    Google Scholar
     

  • Fahrenfeld, N. L., Arbuckle-Keil, G., Beni, N. N. & Bartelt-Hunt, S. L. Source tracking microplastics in the freshwater environment. TrAC Trends Anal. Chem. 112, 248–254 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Dey, T. Microplastic toxin detection by surface area boosted Raman spectroscopy (SERS): A mini-review. Nanotechnol. Environ. Eng. 8, 41–48 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Yang, S. High-wavenumber Raman analysis. In Recent Developments in Atomic Force Microscopy and Raman Spectroscopy for Materials Characterization (eds Pathak, C. S. & Kumar, S.) (IntechOpen, 2021). https://doi.org/10.5772/intechopen.100474.

    Chapter 

    Google Scholar
     

  • Tuschel, D. Selecting an excitation wavelength for Raman spectroscopy. Spectroscopy 31, 14–23 (2016).


    Google Scholar
     

  • Munno, K., De Frond, H., O’Donnell, B. & Rochman, C. M. Increasing the availability for defining microplastics: Introducing brand-new application-based and spectral libraries of plastic particles (SLoPP and SLoPP-E). Anal. Chem. 92, 2443–2451 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dong, M. et al. A Raman database of microplastics weathered under natural surroundings. Mendeley Data V2 739, 139990 (2020).

    CAS 

    Google Scholar
     

  • Rohatgi, A. WebPlotDigitizer. Preprint at (2021).

  • di Frischia, S., Chiuri, A., Angelini, F. & Colao, F. Optimization of signal-to-noise ratio in a CCD for spectroscopic applications. (2019).

  • di Frischia, S. et al. Enhanced information enhancement utilizing GANs for Raman spectra category. In 2020 IEEE International Conference on Big Data (Big Data) 2891–2898 (2020). https://doi.org/10.1109/BigData50022.2020.9377977.

  • Pedregosa, F. et al. Scikit-learn: Machine knowing in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).

    MathSciNet 
    MATH 

    Google Scholar
     

  • Maruthamuthu, M. K., Raffiee, A. H., de Oliveira, D. M., Ardekani, A. M. & Verma, M. S. Raman spectra-based deep knowing: A tool to recognize microbial contamination. Microbiologyopen 9, e1122 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ho, C.-S. et al. Rapid recognition of pathogenic germs utilizing Raman spectroscopy and deep knowing. Nat Commun 10, 4927 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu, S. et al. Analysis of Raman spectra by utilizing deep knowing approaches in the recognition of marine pathogens. Anal. Chem. 93, 11089–11098 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang, S. et al. Blood types recognition based upon deep knowing analysis of Raman spectra. Biomed. Opt. Express 10, 6129–6144 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kukula, K. et al. Rapid detection of germs utilizing Raman spectroscopy and deep knowing. In 2021 IEEE 11th Annual Computing and Communication Workshop and Conference (CCWC), 796–799 (2021). https://doi.org/10.1109/CCWC51732.2021.9375955.

  • Huang, J. et al. On-website detection of SARS–CoV-2 antigen by deep learning-based surface-enhanced Raman spectroscopy and its biochemical structures. Anal. Chem. 93, 9174–9182 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shao, X. et al. Deep convolutional neural networks integrate Raman spectral signature of serum for prostate cancer bone metastases evaluating. Nanomedicine 29, 102245 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ciloglu, F. U. et al. Drug-resistant Staphylococcus aureus germs detection by integrating surface-enhanced Raman spectroscopy (SERS) and deep knowing methods. Sci. Rep. 11, 18444 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yan, H. et al. Tongue squamous cell cancer discrimination with Raman spectroscopy and convolutional neural networks. Vib. Spectrosc. 103, 102938 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, L. et al. Rapid histology of laryngeal squamous cell cancer with deep-learning based promoted Raman spreading microscopy. Theranostics 9, 2541–2554 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shin, H. et al. Early-phase lung cancer medical diagnosis by deep learning-based spectroscopic analysis of flowing exosomes. AIR CONDITIONING Nano 14, 5435–5444 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ma, D. et al. Classifying breast cancer tissue by Raman spectroscopy with one-dimensional convolutional neural network. Spectrochim. Acta A Mol. Biomol. Spectrosc. 256, 119732 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lu, H., Tian, S., Yu, L., Lv, X. & Chen, S. Diagnosis of liver disease B based upon Raman spectroscopy integrated with a multiscale convolutional neural network. Vib Spectrosc 107, 103038 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Li, Y. et al. Early medical diagnosis of stomach cancer based upon deep knowing integrated with the spectral-spatial category approach. Biomed. Opt. Express 10, 4999–5014 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guselnikova, O. et al. Label-complimentary surface-enhanced Raman spectroscopy with synthetic neural network strategy for acknowledgment photoinduced DNA damage. Biosens Bioelectron 145, 111718 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, K. et al. Arcobacter recognition and types decision utilizing Raman spectroscopy integrated with neural networks. Appl. Environ. Microbiol. 86, e00924 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chollet, F. et al. Keras. GitHub. Preprint at (2015).

  • He, K., Zhang, X., Ren, S. & Sun, J. Deep recurring knowing for image acknowledgment. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 770–778 (2016).

  • Brownlee, J. Classification precision is inadequate: more efficiency steps you can utilize. (2014).

  • Youden, W. J. Index for ranking diagnostic tests. Cancer 3, 32–35 (1950).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, J., Erath, J., Rodriguez, A. & Yang, C. A high-efficiency microfluidic gadget for size-selective trapping and sorting. Lab Chip 14, 2480–2490 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • - Advertisement -
    Pet News 2Day
    Pet News 2Dayhttps://petnews2day.com
    About the editor Hey there! I'm proud to be the editor of Pet News 2Day. With a lifetime of experience and a genuine love for animals, I bring a wealth of knowledge and passion to my role. Experience and Expertise Animals have always been a central part of my life. I'm not only the owner of a top-notch dog grooming business in, but I also have a diverse and happy family of my own. We have five adorable dogs, six charming cats, a wise old tortoise, four adorable guinea pigs, two bouncy rabbits, and even a lively flock of chickens. Needless to say, my home is a haven for animal love! Credibility What sets me apart as a credible editor is my hands-on experience and dedication. Through running my grooming business, I've developed a deep understanding of various dog breeds and their needs. I take pride in delivering exceptional grooming services and ensuring each furry client feels comfortable and cared for. Commitment to Animal Welfare But my passion extends beyond my business. Fostering dogs until they find their forever homes is something I'm truly committed to. It's an incredibly rewarding experience, knowing that I'm making a difference in their lives. Additionally, I've volunteered at animal rescue centers across the globe, helping animals in need and gaining a global perspective on animal welfare. Trusted Source I believe that my diverse experiences, from running a successful grooming business to fostering and volunteering, make me a credible editor in the field of pet journalism. I strive to provide accurate and informative content, sharing insights into pet ownership, behavior, and care. My genuine love for animals drives me to be a trusted source for pet-related information, and I'm honored to share my knowledge and passion with readers like you.
    -Advertisement-

    Latest Articles

    -Advertisement-

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here
    Captcha verification failed!
    CAPTCHA user score failed. Please contact us!