Sunday, April 28, 2024
Sunday, April 28, 2024
HomePet NewsExotic Pet NewsTissue damaging toxins in snake venoms: mechanisms of motion, pathophysiology and therapy...

Tissue damaging toxins in snake venoms: mechanisms of motion, pathophysiology and therapy methods

Date:

Related stories

-Advertisement-spot_img
-- Advertisment --
- Advertisement -
  • Gutiérrez, J. M. et al. Snakebite envenoming. Nat. Rev. Dis. Prim. 3, 17063 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Alirol, E., Sharma, S. Okay., Bawaskar, H. S., Kuch, U. & Chappuis, F. Snake chunk in south asia: A overview. PLoS Negl. Trop. Dis. 4, e603 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Warrell, D. A. Guidelines of Management of Snake chunk. Lancet 375, 77–88 (2010).

    Article 
    PubMed 

    Google Scholar 

  • Gutiérrez, J. M., Theakston, R. D. G. & Warrell, D. A. Confronting the uncared for drawback of snake chunk envenoming: The want for a worldwide partnership. PLoS Med. 3, 0727–0731 (2006).

    Article 

    Google Scholar 

  • Waiddyanatha, S., Silva, A., Siribaddana, S. & Isbister, G. Okay. Long-term results of snake envenoming. Toxins (Basel). 11, 193 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Longbottom, J. et al. Vulnerability to snakebite envenoming: a worldwide mapping of hotspots. Lancet 392, 673–684 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vaiyapuri, S. et al. Snakebite and its socio-economic influence on the agricultural inhabitants of Tamil Nadu, India. PLoS One 8, e80090 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pyron, R. A., Burbrink, F. T. & Wiens, J. J. A phylogeny and revised classification of Squamata, together with 4161 species of lizards and snakes. BMC Evol. Biol. 13, 93 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fry, B. G. et al. Molecular evolution and phylogeny of elapid snake venom three-finger toxins. J. Mol. Evol. 57, 110–129 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Harris, J. B. & Scott-Davey, T. Secreted Phospholipases A 2 of Snake Venoms: Effects on the Peripheral Neuromuscular System with Comments on the Role of Phospholipases A 2 in Disorders of the CNS and Their Uses in Industry. Toxins (Basel). 5, 2533–2571 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Utkin, Y., Sunagar, Okay., Jackson, T. N. W., Reeks, T. & Fry, B. Three finger toxins (3FTXs). In Venomous Reptiles and Their Toxins: Evolution, Pathophysiology and Biodiscovery (ed. Fry, B.) 215–227 (2015).

  • Karlsson, E., Mbugua, P. M. & Rodriguez-Ithurralde, D. Fasciculins, anticholinesterase toxins from the venom of the inexperienced mamba Dendroaspis angusticeps. J. Physiol. 79, 232–240 (1984).

    CAS 

    Google Scholar 

  • Harvey, A. L. Twenty years of dendrotoxins. Toxicon 39, 15–26 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Harvey, A. L. & Robertson, B. Dendrotoxins: structure-activity relationships and results on potassium ion channels. Curr. Med. Chem. 11, 3065–3072 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • White, J. Snake venoms and coagulopathy. Toxicon 45, 951–967 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Berling, I. & Isbister, G. Okay. Hematologic Effects and Complications of Snake Envenoming. Transfus. Med. Rev. 29, 82–89 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Gutiérrez, J. M., Rucavado, A., Escalante, T. & Díaz, C. Hemorrhage induced by snake venom metalloproteinases: Biochemical and biophysical mechanisms concerned in microvessel injury. Toxicon 45, 997–1011 (2005).

    Article 
    PubMed 

    Google Scholar 

  • Gutiérrez, J. M., Escalante, T., Rucavado, A. & Herrera, C. Hemorrhage attributable to snake venom metalloproteinases: A journey of discovery and understanding. Toxins (Basel). 8, 93 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Escalante, T. et al. Role of collagens and perlecan in microvascular stability: Exploring the mechanism of capillary vessel injury by snake venom metalloproteinases. PLoS One 6, e28017 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Teixeira, C., Moreira, C. & Gutierrez, J. M. Venoms. In Inflammation: From Molecular and Cellular Mechanisms to the Clinic (ed. Cavaillon, J. M., Singer, M.) 99–128 (Wiley, 2018).

  • Gutiérrez, J. M. & Ownby, C. L. Skeletal muscle degeneration induced by venom phospholipases A2: insights into the mechanisms of native and systemic myotoxicity. Toxicon 42, 915–931 (2003).

    Article 
    PubMed 

    Google Scholar 

  • Montecucco, C., Gutiérrez, J. M. & Lomonte, B. Cellular pathology induced by snake venom phospholipase A2 myotoxins and neurotoxins: Common points of their mechanisms of motion. Cell. Mol. Life Sci. 65, 2897–2912 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sitprija, V. Animal toxins and the kidney. Nat. Clin. Pract. Nephrol. 4, 616–627 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gasanov, S. E., Dagda, R. Okay. & Rael, E. D. Snake Venom Cytotoxins, Phospholipase A2 s, and Zn2+ -dependent Metalloproteinases: Mechanisms of Action and Pharmacological Relevance. J. Clin. Toxicol. 4, 1000181 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rivel, M. et al. Pathogenesis of dermonecrosis induced by venom of the spitting cobra, Naja nigricollis: An experimental research in mice. Toxicon 119, 171–179 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gutiérrez, J. M. & Rucavado, A. Snake venom metalloproteinases: Their position within the pathogenesis of native tissue injury. Biochimie 82, 841–850 (2000).

    Article 
    PubMed 

    Google Scholar 

  • Jiménez, N., Escalante, T., Gutiérrez, J. M. & Rucavado, A. Skin pathology induced by snake venom metalloproteinase: Acute injury, revascularization, and re-epithelization in a mouse ear mannequin. J. Invest. Dermatol. 128, 2421–2428 (2008).

    Article 
    PubMed 

    Google Scholar 

  • Dubovskii, P., Konshina, A. & Efremov, R. Cobra Cardiotoxins: Membrane Interactions and Pharmacological Potential. Curr. Med. Chem. 21, 270–287 (2013).

    Article 

    Google Scholar 

  • Sarkar, B., Maitra, S. & Ghosh, B. The Effect of Neurotoxin, Haemolysin and Choline Esterase Isolated from Cobra Venom on Heart, Blood Pressure and Respiration. J. Ind. chem. Soc. 30, 453–460 (1942).

    CAS 

    Google Scholar 

  • Sarkar, N. Okay. Isolation of cardiotoxin from cobra venom (Naja tripudians), monocellate selection).J. Ind. Chem. Soc 24, 227–232 (1947).

    CAS 

    Google Scholar 

  • Harvey, A. L. Cardiotoxins from cobra venoms: Possible mechanisms of motion. Toxin Rev. 4, 41–69 (1985).

    CAS 

    Google Scholar 

  • Dufton, M. J. & Hider, R. C. Structure and pharmacology of elapid cytotoxins. Pharm. Ther. 36, 1–40 (1988).

    Article 
    CAS 

    Google Scholar 

  • Kazandjian, T. D. et al. Convergent evolution of pain-inducing defensive venom parts in spitting cobras. Sci. (80-.). 371, 386–390 (2021).

    Article 
    CAS 

    Google Scholar 

  • Lomonte, B., Tarkowski, A. & Hanson, L. Å. Broad cytolytic specificity of myotoxin II, a lysine-49 phospholipase A2 of Bothrops asper snake venom. Toxicon 32, 1359–1369 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bultrón, E., Thelestam, M. & Gutiérrez, J. Effects on cultured mammalian cells of myotoxin III, a phospholipase A2 remoted from Bothrops asper (terciopelo) venom. Biochim. Biophys. Acta – Mol. Cell Res. 1179, 253–259 (1993).

    Article 

    Google Scholar 

  • Queiroz, L. S., Santo Neto, H., Assakura, M. T., Reichl, A. P. & Mandelbaum, F. R. Pathological adjustments in muscle attributable to haemorrhagic and proteolytic components from Bothrops jararaca snake venom. Toxicon 23, 341–345 (1985).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ownby, C. L. Structure, perform and biophysical points of the myotoxins from snake venoms. J. Toxicol. – Toxin Rev. 17, 213–238 (1998).

    Article 
    CAS 

    Google Scholar 

  • Rucavado, A., Lomonte, B., Ovadia, M. & Gutiérrez, J. M. Local tissue injury induced by BaP1, a metalloproteinase remoted from Bothrops asper (Terciopelo) snake venom. Exp. Mol. Pathol. 63, 186–199 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Williams, H. F. et al. Mechanisms underpinning the everlasting muscle injury induced by snake venom metalloprotease. PLoS Negl. Trop. Dis. 13, 1–20 (2019).

    Article 
    CAS 

    Google Scholar 

  • Alberts, B. et al. Essential cell biology: Fifth worldwide pupil version. (WW Norton & Company., 2018).

  • Brahma, R. Okay., Modahl, C. M. & Kini, R. M. Three-Finger Toxins. In Handbook of Venoms and Toxins of Reptiles (ed. Mackessy, S. P.) 177–194 (CRC Press, 2021).

  • Bilwes, A., Rees, B., Moras, D., Ménez, R. & Ménez, A. X-ray construction at 1.55 Å of toxin γ, a cardiotoxin from Naja nigricollis venom: Crystal packing reveals a mannequin for insertion into membranes. J. Mol. Biol. 239, 122–136 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Dufton, M. J. & Hider, R. C. Conformational properties of the neurotoxins and cytotoxins remoted from Elapid snake venoms. CRC Crit. Rev. Biochem. 14, 113–171 (1983).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Dauplais, M., Neumann, J. M., Pinkasfeld, S., Ménez, A. & Roumestand, C. An NMR Study of the Interaction of Cardiotoxin γ from Naja nigricollis with Perdeuterated Dodecylphosphocholine Micelles. Eur. J. Biochem. 230, 213–220 (1995).

    CAS 
    PubMed 

    Google Scholar 

  • Forouhar, F. et al. Structural foundation of membrane-induced cardiotoxin A3 oligomerization. J. Biol. Chem. 278, 21980–21988 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Feofanov, A. V. et al. Cancer cell harm by cytotoxins from cobra venom is mediated via lysosomal injury. Biochem. J. 390, 11–18 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hiu, J. J. & Yap, M. Okay. Okay. The fable of cobra venom cytotoxin: More than simply direct cytolytic actions. Toxicon X 14, 100123 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Condrea, E., De Vries, A. & Mager, J. Hemolysis and splitting of human erythrocyte phospholipids by snake venoms. BBA – Spec. Sect. Lipids Relat. Subj. 84, 60–73 (1964).

    CAS 

    Google Scholar 

  • Klibansky, C., London, Y., Frenkel, A. & De Vries, A. Enhancing motion of artificial and pure basic polypeptides on erythrocyte-ghost phospholipid hydrolysis by phospholipase A. Biochim. Biophys. Acta – Biomembr. 150, 15–23 (1968).

    Article 
    CAS 

    Google Scholar 

  • Louw, A. I. & Visser, L. The synergism of cardiotoxin and phospholipase A2 in hemolysis. BBA – Biomembr. 512, 163–171 (1978).

    Article 
    CAS 

    Google Scholar 

  • Pucca, M. B. et al. Unity Makes Strength: Exploring Intraspecies and Interspecies Toxin Synergism between Phospholipases A2 and Cytotoxins. Front. Pharmacol. 11, 1–10 (2020).

    Article 

    Google Scholar 

  • Bougis, P. E., Marchot, P. & Rochat, H. In vivo synergy of cardiotoxin and phospholipase A2 from the elapid snake Naja mossambica mossambica. Toxicon 25, 427–431 (1987).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kini, R. M. Excitement forward: Structure, perform and mechanism of snake venom phospholipase A2 enzymes. Toxicon 42, 827–840 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tasoulis, T. & Isbister, G. Okay. A present perspective on snake venom composition and constituent protein households. Arch. Toxicol. 97, 133–153 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Lomonte, B. & Krizaj, I. Snake venom phospholipase A2 toxins. In Handbook of Venoms and Toxins of Reptiles (ed. Mackessy, S. P.) 389–411 (CRC Press, 2021).

  • Lynch, V. J. Inventing an arsenal: adaptive evolution and neofunctionalization of snake venom phospholipase A 2 genes. BMC Evol. Biol. 7, 2 (2007).

  • Kini, R. M. Structure – perform relationships and mechanism of anticoagulant phospholipase A 2 enzymes from snake venoms. Toxicon 45, 1147–1161 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lomonte, B. Lys49 myotoxins, secreted phospholipase A2-like proteins of viperid venoms: A complete overview. Toxicon 224, 107024 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Fernández, J. et al. Muscle phospholipid hydrolysis by Bothrops asper Asp49 and Lys49 phospholipase A2 myotoxins – distinct mechanisms of motion. FEBS J. 280, 3878–3886 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Fernandes, C. A. H., Borges, R. J., Lomonte, B. & Fontes, M. R. M. A structure-based proposal for a complete myotoxic mechanism of phospholipase A2-like proteins from viperid snake venoms. Biochim. Biophys. Acta – Proteins Proteom. 1844, 2265–2276 (2014).

    Article 
    CAS 

    Google Scholar 

  • Fernandes, C. A. H. et al. Comparison between apo and complexed buildings of bothropstoxin-I reveals the position of Lys122 and Ca2+-binding loop area for the catalytically inactive Lys49-PLA2s. J. Struct. Biol. 171, 31–43 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mora-Obando, D., Fernández, J., Montecucco, C., Gutiérrez, J. M. & Lomonte, B. Synergism between basic Asp49 and Lys49 phospholipase A2 myotoxins of viperid snake venom in vitro and in vivo. PLoS One 9, e109846 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lomonte, B. et al. Comparative research of the cytolytic exercise of myotoxic phospholipases A2 on mouse endothelial (tEnd) and skeletal muscle (C2C12) cells in vitro. Toxicon 37, 145–158 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Villalobos, J. C., Mora, R., Lomonte, B., Gutiérrez, J. M. & Angulo, Y. Cytotoxicity induced in myotubes by a Lys49 phospholipase A2 homologue from the venom of the snake Bothrops asper: Evidence of speedy plasma membrane injury and a twin position for extracellular calcium. Toxicol. Vitr. 21, 1382–1389 (2007).

    Article 
    CAS 

    Google Scholar 

  • Cintra-Francischinelli, M. et al. Calcium imaging of muscle cells handled with snake myotoxins reveals toxin synergism and presence of acceptors. Cell. Mol. Life Sci. 66, 1718–1728 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • López-Dávila, A. J., Lomonte, B. & Gutiérrez, J. M. Alterations of the skeletal muscle contractile equipment in necrosis induced by myotoxic snake venom phospholipases A2: a mini-review. J. Muscle Res. Cell Motil. https://doi.org/10.1007/s10974-023-09662-4 (2023).

  • Mora, R., Valverde, B., Díaz, C., Lomonte, B. & Gutiérrez, J. M. A Lys49 phospholipase A2 homologue from Bothrops asper snake venom induces proliferation, apoptosis and necrosis in a lymphoblastoid cell line. Toxicon 45, 651–660 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mora, R., Maldonado, A., Valverde, B. & Gutiérrez, J. M. Calcium performs a key position within the results induced by a snake venom Lys49 phospholipase A 2 homologue on a lymphoblastoid cell line. Toxicon 47, 75–86 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mebs, D. & Ownby, C. L. Myotoxic parts of snake venoms: Their biochemical and organic actions. Pharmacol. Ther. 48, 223–236 (1990).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tasoulis, T. & Isbister, G. Okay. A overview and database of snake venom proteomes. Toxins (Basel). 9, 290 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hayashi, M. A. F. et al. Cytotoxic results of crotamine are mediated via lysosomal membrane permeabilization. Toxicon 52, 508–517 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kerkis, I., Silva, F. D. S., Pereira, A., Kerkis, A. & Rádis-Baptista, G. Biological versatility of crotamine a cationic peptide from the venom of a South American rattlesnake. Expert Opin. Investig. Drugs 19, 1515–1525 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chang, C. C. & Tseng, Okay. H. Effect of crotamine, a toxin of south american rattlesnake venom, on the sodium channel of murine skeletal muscle. Br. J. Pharmacol. 63, 551–559 (1978).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ownby, C. L., Cameron, D. & Tu, A. T. Isolation of myotoxic element from rattlesnake (Crotalus viridis viridis) venom. Electron microscopic evaluation of muscle injury. Am. J. Pathol. 85, 149 (1976).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Joshi, R. et al. Evaluation of crotamine primarily based probes as intracellular focused distinction brokers for magnetic resonance imaging. Bioorg. Med. Chem. 69, 116863 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Frantz, C., Stewart, Okay. M. & Weaver, V. M. The extracellular matrix at a look. J. Cell Sci. 123, 4195–4200 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jayadev, R. & Sherwood, D. R. Basement membranes. Curr. Biol. 27, R207–R211 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Grönloh, M. L. B., Arts, J. J. G. & van Buul, J. D. Neutrophil transendothelial migration hotspots – Mechanisms and implications. J. Cell Sci. 134, jcs255653 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Escalante, T., Rucavado, A., Fox, J. W. & Gutiérrez, J. M. Key occasions in microvascular injury induced by snake venom hemorrhagic metalloproteinases. J. Proteom. 74, 1781–1794 (2011).

    Article 
    CAS 

    Google Scholar 

  • Gutiérrez, J. M., Escalante, T., Rucavado, A., Herrera, C. & Fox, J. W. A complete view of the structural and useful alterations of extracellular matrix by snake venom metalloproteinases (SVMPs): Novel views on the pathophysiology of envenoming. Toxins (Basel). 8, 304 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tasoulis, T., Pukala, T. L. & Isbister, G. Okay. Investigating Toxin Diversity and Abundance in Snake Venom Proteomes. Front. Pharmacol. 12, 768015 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fox, J. W. & Serrano, S. M. T. Structural concerns of the snake venom metalloproteinases, key members of the M12 reprolysin household of metalloproteinases. Toxicon 45, 969–985 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Anai, Okay., Sugiki, M., Yoshida, E. & Maruyama, M. Neutralization of a snake venom hemorrhagic metalloproteinase prevents coagulopathy after subcutaneous injection of Bothrops jararaca venom in rats. Toxicon 40, 63–68 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Herrera, C. et al. Tissue Localization and Extracellular Matrix Degradation by PI, PII and PIII Snake Venom Metalloproteinases: Clues on the Mechanisms of Venom-Induced Hemorrhage. PLoS Negl. Trop. Dis. 9, 1–20 (2015).

    Article 

    Google Scholar 

  • Baldo, C., Jamora, C., Yamanouye, N., Zorn, T. M. & Moura-da-Silva, A. M. Mechanisms of vascular injury by hemorrhagic snake venom metalloproteinases: Tissue distribution and in Situ hydrolysis. PLoS Negl. Trop. Dis. 4, e727 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gutiérrez, J. M. et al. Skeletal muscle necrosis and regeneration after injection of BaH1, a hemorrhagic metalloproteinase remoted from the venom of the snake Bothrops asper (terciopelo). Exp. Mol. Pathol. 62, 28–41 (1995).

    Article 
    PubMed 

    Google Scholar 

  • Boer-Lima, P. A., Rocha Gontijo, J. A. & Da Cruz-Höfling, M. A. Bothrops moojeni snake venom-induced renal glomeruli adjustments in rat. Am. J. Trop. Med. Hyg. 67, 217–222 (2002).

    Article 
    PubMed 

    Google Scholar 

  • Herrera, C., Escalante, T., Rucavado, A., Fox, J. W. & Gutiérrez, J. M. Metalloproteinases in illness: identification of biomarkers of tissue injury via proteomics. Expert Rev. Proteom. 15, 967–982 (2018).

    Article 
    CAS 

    Google Scholar 

  • Junqueira-de-Azevedo, I. L. M., Campos, P. F., Ching, A. T. C. & Mackessy, S. P. Colubrid Venom Composition: An -Omics Perspective. Toxins (Basel). 8, 1–24 (2016).

    Article 

    Google Scholar 

  • Kemparaju, Okay. & Girish, Okay. S. Snake venom hyaluronidase: A therapeutic goal. Cell Biochem. Funct. 24, 7–12 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Girish, Okay. S. & Kemparaju, Okay. The magic glue hyaluronan and its eraser hyaluronidase: A organic overview. Life Sci. 80, 1921–1943 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tu, A. T. & Hendon, R. R. Characterization of lizard venom hyaluronidase and proof for its motion as a spreading issue. Comp. Biochem. Physiol. Part B Comp. Biochem. 76, 377–383 (1983).

    Article 
    CAS 

    Google Scholar 

  • Girish, Okay., Kemparaju, Okay., Nagaraju, S. & Vishwanath, B. Hyaluronidase Inhibitors: A Biological and Therapeutic Perspective. Curr. Med. Chem. 16, 2261–2288 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yingprasertchai, S., Bunyasrisawat, S. & Ratanabanangkoon, Okay. Hyaluronidase inhibitors (sodium cromoglycate and sodium auro-thiomalate) scale back the native tissue injury and lengthen the survival time of mice injected with Naja kaouthia and Calloselasma rhodostoma venoms. Toxicon 42, 635–646 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sunitha, Okay. et al. Inflammation and oxidative stress in viper chunk: An perception inside and past. Toxicon 98, 89–97 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Resiere, D., Mehdaoui, H. & Neviere, R. Inflammation and Oxidative Stress in Snakebite Envenomation: A Brief Descriptive Review and Clinical Implications. Toxins (Basel). 14, 802 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rucavado, A. et al. Viperid Envenomation Wound Exudate Contributes to Increased Vascular Permeability by way of a DAMPs/TLR-4 Mediated Pathway. Toxins 8, 349 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zuliani, J. P. Alarmins and inflammatory points associated to snakebite envenomation. Toxicon 226, 107088 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cintra-Francischinelli, M. et al. Bothrops snake myotoxins induce a big efflux of ATP and potassium with spreading of cell injury and ache. Proc. Natl Acad. Sci. USA 107, 14140–14145 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mora, J., Mora, R., Lomonte, B. & Gutiérrez, J. M. Effects of bothrops asper snake venom on lymphatic vessels: Insights right into a hidden facet of envenomation. PLoS Negl. Trop. Dis. 2, e318 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Warrell, D. A., Greenwood, B. M., Davidson, N. M., Ormerod, L. D. & Prentice, C. R. Necrosis, haemorrhage and complement depletion following bites by the spitting cobra (Naja nigricollis). Q. J. Med. 45, 1–22 (1976).

    CAS 
    PubMed 

    Google Scholar 

  • Warrell, D. A. & Ormerod, L. D. Snake Venom Ophthalmia and Blindness Caused by the Spitting Cobra (Naja Nigricollis) in Nigeria. Am. J. Trop. Med. Hyg. 25, 525–529 (1976).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gimenes, S. N. C. et al. Observation of bothrops atrox snake envenoming blister formation from 5 sufferers: Pathophysiological insights. Toxins (Basel). 13, 800 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • De Souza Queiróz, L., Marques, M. J. & Santo Neto, H. Acute native nerve lesions induced by Bothrops jararacussu snake venom. Toxicon 40, 1483–1486 (2002).

    Article 
    PubMed 

    Google Scholar 

  • Hernández, R. et al. Poor regenerative consequence after skeletal muscle necrosis induced by bothrops asper venom: Alterations in microvasculature and nerves. PLoS One 6, e19834 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gutiérrez, J. M. et al. Why is Skeletal Muscle Regeneration Impaired after Myonecrosis Induced by Viperid Snake Venoms? Toxins 10, 182 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Azevedo-Marques, M. M. et al. Myonecrosis, myoglobinuria and acute renal failure induced by south american rattlesnake (Crotalus durissus terrificus) envenomation in brazil. Toxicon 23, 631–636 (1985).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • White, J. Clinical toxicology of snakebite in Australia and New Guinea. In Handbook of Clinical Toxicology of Animal Venoms and Poisons (eds. Meier, J. & White, J.) 595–617 (CRC Press, 1995).

  • Pinho, F. M. O., Zanetta, D. M. T. & Burdmann, E. A. Acute renal failure after Crotalus durissus snakebite: A potential survey on 100 sufferers. Kidney Int. 67, 659–667 (2005).

    Article 
    PubMed 

    Google Scholar 

  • Arce-Bejarano, R., Lomonte, B. & Gutiérrez, J. M. Intravascular hemolysis induced by the venom of the Eastern coral snake, Micrurus fulvius, in a mouse mannequin: Identification of instantly hemolytic phospholipases A2. Toxicon 90, 26–35 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Xie, C. et al. Erythrocyte haemotoxicity profiling of snake venom toxins after nanofractionation. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 1176, 122586 (2021).

    Article 
    CAS 

    Google Scholar 

  • Sitprija, V. & Sitprija, S. Renal results and harm induced by animal toxins. Toxicon 60, 943–953 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • de Paola, F. & Rossi, M. A. Myocardial injury induced by tropical rattlesnake (Crotalus durissus terrificus) venom in rats. Cardiovasc. Pathol. 2, 77–81 (1993).

    Article 
    PubMed 

    Google Scholar 

  • Hoffman, A., Levi, O., Orgad, U. & Nyska, A. Myocarditis following envenoming with Vipera palaestinae in two horses. Toxicon 31, 1623–1628 (1993).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tanjoni, I. et al. Jararhagin, a snake venom metalloproteinase, induces a specialised type of apoptosis (anoikis) selective to endothelial cells. Apoptosis 10, 851–861 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Díaz, C., Valverde, L., Brenes, O., Rucavado, A. & Gutiérrez, J. M. Characterization of occasions related to apoptosis/anoikis induced by snake venom metalloproteinase BaP1 on human endothelial cells. J. Cell. Biochem. 94, 520–528 (2005).

    Article 
    PubMed 

    Google Scholar 

  • Grossmann, J. Molecular mechanisms of ‘detachment-induced apoptosis – Anoikis’. Apoptosis 7, 247–260 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Paoli, P., Giannoni, E. & Chiarugi, P. Anoikis molecular pathways and its position in most cancers development. Biochim. Biophys. Acta – Mol. Cell Res. 1833, 3481–3498 (2013).

    Article 
    CAS 

    Google Scholar 

  • Meredith, J. E., Fazeli, B. & Schwartz, M. A. The extracellular matrix as a cell survival issue. Mol. Biol. Cell 4, 953 (1993).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Aoudjit, F. & Vuori, Okay. Matrix Attachment Regulates FAS-Induced Apoptosis in Endothelial CellsA Role for C-Flip and Implications for Anoikis. J. Cell Biol. 152, 633–644 (2001).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Borkow, G., Gutiérrez, J. & Ovadia, M. In vitro exercise of BaH1, the primary hemorrhagic toxin of Bothrops asper snake venom on bovine endothelial cells. Toxicon 33, 1387–1391 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Araki, S., Masuda, S., Maeda, H., Ying, M. J. & Hayashi, H. Involvement of particular integrins in apoptosis induced by vascular apoptosis-inducing protein 1. Toxicon 40, 535–542 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Brenes, O., Muñóz, E., Roldán-Rodríguez, R. & Díaz, C. Cell loss of life induced by Bothrops asper snake venom metalloproteinase on endothelial and different cell strains. Exp. Mol. Pathol. 88, 424–432 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Calvete, J. J. et al. Snake venom disintegrins: Evolution of construction and performance. Toxicon 45, 1063–1074 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cesar, P. H. S., Braga, M. A., Trento, M. V. C., Menaldo, D. L. & Marcussi, S. Snake Venom Disintegrins: An Overview of their Interaction with Integrins. Curr. Drug Targets 20, 465–477 (2018).

    Article 

    Google Scholar 

  • Sartim, M. A. & Sampaio, S. V. Snake venom galactoside-binding lectins: A structural and useful overview. J. Venom. Anim. Toxins Incl. Trop. Dis. 21, 1–11 (2015).

    Article 

    Google Scholar 

  • Nunes, E. S. et al. Cytotoxic impact and apoptosis induction by Bothrops leucurus venom lectin on tumor cell strains. Toxicon 59, 667–671 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pathan, J., Mondal, S., Sarkar, A. & Chakrabarty, D. Daboialectin, a C-type lectin from Russell’s viper venom induces cytoskeletal injury and apoptosis in human lung most cancers cells in vitro. Toxicon 127, 11–21 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhang, C., Medzihradszky, Okay. F., Sánchez, E. E., Basbaum, A. I. & Julius, D. Lys49 myotoxin from the Brazilian lancehead pit viper elicits ache via regulated ATP launch. Proc. Natl Acad. Sci. Usa. 114, E2524–E2532 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bours, M. J. L., Swennen, E. L. R., Di Virgilio, F., Cronstein, B. N. & Dagnelie, P. C. Adenosine 5′-triphosphate and adenosine as endogenous signaling molecules in immunity and irritation. Pharmacol. Ther. 112, 358–404 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Di Virgilio, F. Liaisons dangereuses: P2X7 and the inflammasome. Trends Pharmacol. Sci. 28, 465–472 (2007).

    Article 
    PubMed 

    Google Scholar 

  • Tonello, F. et al. A Lys49-PLA2 myotoxin of Bothrops asper triggers a speedy loss of life of macrophages that includes autocrine purinergic receptor signaling. Cell Death Dis. 3, e343–e343 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schieber, M. & Chandel, N. S. ROS perform in redox signaling and oxidative stress. Curr. Biol. 24, R453–R462 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fujii, J., Homma, T. & Osaki, T. Superoxide Radicals within the Execution of Cell Death. Antioxidants 11, 501 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Du, X. Y. & Clemetson, Okay. J. Snake venom L-amino acid oxidases. Toxicon 40, 659–665 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Guo, C., Liu, S., Yao, Y., Zhang, Q. & Sun, M. Z. Past decade research of snake venom l-amino acid oxidase. Toxicon 60, 302–311 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ande, S. R. et al. Mechanisms of cell loss of life induction by L-amino acid oxidase, a significant element of ophidian venom. Apoptosis 11, 1439–1451 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Costal-Oliveira, F. et al. L-amino acid oxidase from Bothrops atrox snake venom triggers autophagy, apoptosis and necrosis in regular human keratinocytes. Sci. Rep. 9, 781 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Naumann, G. B. et al. Cytotoxicity and inhibition of platelet aggregation attributable to an l-amino acid oxidase from Bothrops leucurus venom. Biochim. Biophys. Acta – Gen. Subj. 1810, 683–694 (2011).

    Article 
    CAS 

    Google Scholar 

  • Torii, S., Naito, M. & Tsuruo, T. Apoxin I, a Novel Apoptosis-inducing Factor with L-Amino Acid Oxidase Activity Purified from Western Diamondback Rattlesnake Venom. J. Biol. Chem. 272, 9539–9542 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Abidin, S. A. Z., Rajadurai, P., Chowdhury, E. H., Othman, I. & Naidu, R. Cytotoxic, Anti-Proliferative and Apoptosis Activity of l-Amino Acid Oxidase from Malaysian Cryptelytrops purpureomaculatus (CP-LAAO) Venom on Human Colon Cancer Cells. Mol 23, 1388 (2018).

    Article 

    Google Scholar 

  • Morais, I. C. O. et al. L-Aminoacid Oxidase from Bothrops leucurus Venom Induces Nephrotoxicity by way of Apoptosis and Necrosis. PLoS One 10, e0132569 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tavares, C. et al. l-Amino acid oxidase remoted from Calloselasma rhodostoma snake venom induces cytotoxicity and apoptosis in JAK2V617F-positive cell strains. Rev. Bras. Hematol. Hemoter. 38, 128–134 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Burin, S. M. et al. CR-LAAO antileukemic impact towards Bcr-Abl+ cells is mediated by apoptosis and hydrogen peroxide. Int. J. Biol. Macromol. 86, 309–320 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Das, T. et al. Inhibition of leukemic U937 cell progress by induction of apoptosis, cell cycle arrest and suppression of VEGF, MMP-2 and MMP-9 actions by cytotoxin protein NN-32 purified from Indian spectacled cobra (Naja naja) venom. Toxicon 65, 1–4 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yang, S.-H., Chien, C.-M., Chang, L.-S. & Lin, S.-R. Cardiotoxin III-Induced Apoptosis Is Mediated by Ca 2+-Dependent Caspase-12 Activation in K562 Cells. J. Biochem Mol. Toxicol. 22, 209–218 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tsai, C. H. et al. Mechanisms of cardiotoxin III-induced apoptosis in human colorectal most cancers Colo205 cells. Clin. Exp. Pharmacol. Physiol. 33, 177–182 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chiou, J. T. et al. Naja atra Cardiotoxin 3 Elicits Autophagy and Apoptosis in U937 Human Leukemia Cells via the Ca2+/PP2A/AMPK Axis. Toxins 11, 527 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gutiérrez, J. M. et al. Tissue pathology induced by snake venoms: How to know a fancy sample of alterations from a techniques biology perspective? Toxicon 55, 166–170 (2010).

    Article 
    PubMed 

    Google Scholar 

  • Pucca, M. B. et al. History of Envenoming Therapy and Current Perspectives. Front. Immunol. 10, 1–13 (2019).

    Article 

    Google Scholar 

  • León, G. et al. Current know-how for the economic manufacture of snake antivenoms. Toxicon 151, 63–73 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Gutiérrez, J. M. et al. Neutralization of native tissue injury induced by Bothrops asper (terciopelo) snake venom. Toxicon 36, 1529–1538 (1998).

    Article 
    PubMed 

    Google Scholar 

  • Gutiérrez, J. M., León, G., Lomonte, B. & Angulo, Y. Antivenoms for snakebite envenomings. Inflamm. Allergy – Drug Targets 10, 369–380 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Harrison, R. A. et al. Research methods to enhance snakebite therapy: Challenges and progress. J. Proteom. 74, 1768–1780 (2011).

    Article 
    CAS 

    Google Scholar 

  • Williams, D. J. et al. Ending the drought: New methods for enhancing the circulate of inexpensive, efficient antivenoms in Asia and Africa. J. Proteom. 74, 1735–1767 (2011).

    Article 
    CAS 

    Google Scholar 

  • Gutiérrez, J. M., Lomonte, B., Sanz, L., Calvete, J. J. & Pla, D. Immunological profile of antivenoms: Preclinical evaluation of the efficacy of a polyspecific antivenom via antivenomics and neutralization assays. J. Proteom. 105, 340–350 (2014).

    Article 

    Google Scholar 

  • Ratanabanangkoon, Okay. A Quest for a Universal Plasma-Derived Antivenom Against All Elapid Neurotoxic Snake Venoms. Front. Immunol. 12, 668328 (2021).

  • Dennis, E. A., Cao, J., Hsu, Y. H., Magrioti, V. & Kokotos, G. Phospholipase A2 enzymes: Physical construction, organic perform, illness implication, chemical inhibition, and therapeutic intervention. Chem. Rev. 111, 6130–6185 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Magrioti, V. & Kokotos, G. Phospholipase A2 inhibitors for the therapy of inflammatory ailments: a patent overview (2010–current). Expert Opin. Ther. Pat. 23, 333–344 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Serruys, P. W. & Garcia-Garcia, H. M. Phospholipase A2 inhibitors. Curr. Opin. Lipidol. 20, 327–332 (2009).

    Article 
    PubMed 

    Google Scholar 

  • Lewin, M., Samuel, S., Merkel, J. & Bickler, P. Varespladib (LY315920) seems to be a potent, broad-spectrum, inhibitor of snake venom phospholipase A2 and a potential pre-referral therapy for envenomation. Toxins (Basel). 8, 248 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gutiérrez, J. M. et al. The seek for pure and artificial inhibitors that will complement antivenoms as therapeutics for snakebite envenoming. Toxins (Basel). 13, 1–30 (2021).

    Article 

    Google Scholar 

  • Lewin, M. R. et al. Delayed oral LY333013 rescues mice from extremely neurotoxic, deadly doses of papuan taipan (Oxyuranus scutellatus) venom. Toxins (Basel). 10, 1–7 (2018).

    Article 

    Google Scholar 

  • Bryan-Quirós, W., Fernández, J., Gutiérrez, J. M., Lewin, M. R. & Lomonte, B. Neutralizing properties of LY315920 towards snake venom group I and II myotoxic phospholipases A2. Toxicon 157, 1–7 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Xiao, H. et al. Inactivation of Venom PLA2 Alleviates Myonecrosis and Facilitates Muscle Regeneration in Envenomed Mice: A Time Course Observation. Mol 23, 1911 (2018).

    Article 

    Google Scholar 

  • Bittenbinder, M. A. et al. Coagulotoxic Cobras: Clinical Implications of Strong Anticoagulant Actions of African Spitting Naja Venoms That Are Not Neutralised by Antivenom however Are by LY315920 (Varespladib). Toxins (Basel). 10, 516 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hall, S. R. et al. Repurposed medicine and their mixtures stop morbidity-inducing dermonecrosis attributable to various cytotoxic snake venoms. Nat. Commun. 14, 7812. https://doi.org/10.1101/2022.05.20.492855 (2023).

  • Carter, R. W. et al. The BRAVO Clinical Study Protocol: Oral Varespladib for Inhibition of Secretory Phospholipase A2 within the Treatment of Snakebite Envenoming. Toxins (Basel). 15, 22 (2023).

  • Laustsen, A. et al. From Fangs to Pharmacology: The Future of Snakebite Envenoming Therapy. Curr. Pharm. Des. 22, 5270–5293 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jenkins, T. P. et al. Toxin neutralization utilizing different binding proteins. Toxins (Basel). 11, 1–28 (2019).

    Article 

    Google Scholar 

  • Rucavado, A., Escalante, T. & Gutiérrez, J. M. Effect of the metalloproteinase inhibitor batimastat within the systemic toxicity induced by Bothrops asper snake venom: Understanding the position of metalloproteinases in envenomation. Toxicon 43, 417–424 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rucavado, A. et al. Inhibition of native hemorrhage and dermonecrosis induced by Bothrops asper snake venom: Effectiveness of early in situ administration of the peptidomimetic metalloproteinase inhibitor batimastat and the chelating agent CaNa2EDTA. Am. J. Trop. Med. Hyg. 63, 313–319 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Arias, A. S., Rucavado, A. & Gutiérrez, J. M. Peptidomimetic hydroxamate metalloproteinase inhibitors abrogate native and systemic toxicity induced by Echis ocellatus (saw-scaled) snake venom. Toxicon 132, 40–49 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Howes, J. M., Theakston, R. D. G. & Laing, G. D. Neutralization of the haemorrhagic actions of viperine snake venoms and venom metalloproteinases utilizing artificial peptide inhibitors and chelators. Toxicon 49, 734–739 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Albulescu, L. O. et al. Preclinical validation of a repurposed metallic chelator as an early-intervention therapeutic for hemotoxic snakebite. Sci. Transl. Med. 12, eaay8314 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Albulescu, L. O. et al. A therapeutic mixture of two small molecule toxin inhibitors offers broad preclinical efficacy towards viper snakebite. Nat. Commun. 11, 1–14 (2020).

    Article 

    Google Scholar 

  • Sivaramakrishnan, V. et al. Viper venom hyaluronidase and its potential inhibitor evaluation: a multipronged computational investigation. J. Biomol. Struct. Dyn. 35, 1979–1989 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Casewell, N. R., Jackson, T. N. W., Laustsen, A. H. & Sunagar, Okay. Causes and Consequences of Snake Venom Variation. Trends Pharmacol. Sci. 41, 570–581 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Roncolato, E. C. et al. Human antibody fragments particular for Bothrops jararacussu venom scale back the toxicity of different Bothrops sp. venoms. J. Immunotoxicol. 10, 160–168 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Laustsen, A. H. et al. Pros and cons of various therapeutic antibody codecs for recombinant antivenom improvement. Toxicon 146, 151–175 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lauridsen, L. H., Shamaileh, H. A., Edwards, S. L., Taran, E. & Veedu, R. N. Rapid One-Step Selection Method for Generating Nucleic Acid Aptamers: Development of a DNA Aptamer towards α-Bungarotoxin. PLoS One 7, e41702 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, Y. J., Tsai, C. Y., Hu, W. P. & Chang, L. S. DNA Aptamers towards Taiwan Banded Krait α-Bungarotoxin Recognize Taiwan Cobra Cardiotoxins. Toxins (Basel). 8, 66 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lynagh, T. et al. Peptide Inhibitors of the α-Cobratoxin-Nicotinic Acetylcholine Receptor Interaction. J. Med. Chem. 63, 13709–13718 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • O’Brien, J., Lee, S. H., Gutiérrez, J. M. & Shea, Okay. J. Engineered nanoparticles bind elapid snake venom toxins and inhibit venom-induced dermonecrosis. PLoS Negl. Trop. Dis. 12, 1–20 (2018).

    Article 

    Google Scholar 

  • Albulescu, L. O. et al. A decoy-receptor method utilizing nicotinic acetylcholine receptor mimics reveals their potential as novel therapeutics towards neurotoxic snakebite. Front. Pharmacol. 10, 1–15 (2019).

    Article 

    Google Scholar 

  • Otvos, R. A. et al. Analytical workflow for speedy screening and purification of bioactives from venom proteomes. Toxicon 76, 270–281 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Palermo, G. et al. Acetylcholine-Binding Protein Affinity Profiling of Neurotoxins in Snake Venoms with Parallel Toxin Identification. Int. J. Mol. Sci. 24, 16769 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nakamoto, M., Escalante, T., Gutiérrez, J. M. & Shea, Okay. J. A Biomimetic of Endogenous Tissue Inhibitors of Metalloproteinases: Inhibition Mechanism and Contribution of Composition, Polymer Size, and Shape to the Inhibitory Effect. Nano Lett. 21, 5663–5670 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Puzari, U., Fernandes, P. A. & Mukherjee, A. Okay. Pharmacological re-assessment of conventional medicinal plants-derived inhibitors as antidotes towards snakebite envenoming: A essential overview. J. Ethnopharmacol. 292, 115208. https://doi.org/10.1016/j.jep.2022.115208 (2022).

  • Lizano, S., Domont, G. & Perales, J. Natural phospholipase A2 myotoxin inhibitor proteins from snakes, mammals and crops. Toxicon 42, 963–977 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bastos, V. A., Gomes-Neto, F., Perales, J., Neves-Ferreira, A. G. C. & Valente, R. H. Natural inhibitors of snake venom metalloendopeptidases: History and present challenges. Toxins (Basel). 8, 250 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • van Thiel, J. et al. Convergent evolution of toxin resistance in animals. Biol. Rev. 97, 1823–1843 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Campos, P. C., de Melo, L. A., Dias, G. L. F. & Fortes-Dias, C. L. Endogenous phospholipase A2 inhibitors in snakes: A short overview. J. Venom. Anim. Toxins Incl. Trop. Dis. 22, 1–7 (2016).

    Article 

    Google Scholar 

  • Fortes-Dias, C. L. Endogenous inhibitors of snake venom phospholipases A2 within the blood plasma of snakes. Toxicon 40, 481–484 (2002). at.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Neves-Ferreira, A. G. C., Valente, R. H., Perales, J. & Domont, G. B. Natural inhibitors – Innate immunity to snake venoms. In Handbook of Venoms and Toxins of Reptiles (ed. Mackessy, S. P.) 259–284 (2010).

  • Mors, W. B., Célia Do Nascimento, M., Ruppelt Pereira, B. M. & Alvares Pereira, N. Plant pure merchandise energetic towards snake chunk — the molecular method. Phytochemistry 55, 627–642 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Soares, A. M. et al. Medicinal Plants with Inhibitory Properties Against Snake Venoms. Curr. Med. Chem. 12, 2625–2641 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Carvalho, B. M. A. et al. Snake Venom PLA 2 s Inhibitors Isolated from Brazilian Plants: Synthetic and Natural Molecules. Biomed. Res. Int. 2013, 153045 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Félix-Silva, J., Silva-Junior, A. A., Zucolotto, S. M. & Fernandes-Pedrosa, M. D. F. Medicinal Plants for the Treatment of Local Tissue Damage Induced by Snake Venoms: An Overview from Traditional Use to Pharmacological Evidence. Evidence-based Complement. Altern. Med. 2017, 5748256 (2017).

  • Zdenek, C. N. et al. A Taxon-Specific and High-Throughput Method for Measuring Ligand Binding to Nicotinic Acetylcholine Receptors. Toxins (Basel). 11, 600 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Harris, R. J. et al. Assessing the binding of venoms from aquatic elapids to the nicotinic acetylcholine receptor orthosteric website of various prey fashions. Int. J. Mol. Sci. 21, 1–13 (2020).

    Article 

    Google Scholar 

  • O’Brien, J., Lee, S. H., Onogi, S. & Shea, Okay. J. Engineering the Protein Corona of a Synthetic Polymer Nanoparticle for Broad-Spectrum Sequestration and Neutralization of Venomous Biomacromolecules. J. Am. Chem. Soc. 138, 16604–16607 (2016).

    Article 
    PubMed 

    Google Scholar 

  • De Oliveira, M. et al. Antagonism of myotoxic and paralyzing actions of bothropstoxin-I by suramin. Toxicon 42, 373–379 (2003).

    Article 
    PubMed 

    Google Scholar 

  • Murakami, M. T. et al. Inhibition of Myotoxic Activity of Bothrops asper Myotoxin II by the Anti-trypanosomal Drug Suramin. J. Mol. Biol. 350, 416–426 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Salvador, G. H. M. et al. Structural and useful characterization of suramin-bound MjTX-I from Bothrops moojeni suggests a specific myotoxic mechanism. Sci. Rep. 8, 1–15 (2018).

    Article 
    CAS 

    Google Scholar 

  • Lomonte, B., Moreno, E., Tarkowski, A., Hanson, L. A. & Maccarana, M. Neutralizing interplay between heparins and myotoxin II, a lysine 49 phospholipase A2 from Bothrops asper snake venom. Identification of a heparin-binding and cytolytic toxin area by means of artificial peptides and molecular modeling. J. Biol. Chem. 269, 29867–29873 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Diccianni, M. B., Mistry, M. J., Hug, Okay. & Harmony, J. A. Okay. Inhibition of phospholipase A2 by heparin. Biochim. Biophys. Acta (BBA)/Lipids Lipid Metab. 1046, 242–248 (1990).

    Article 
    CAS 

    Google Scholar 

  • Rocha, S. L. G. et al. Functional evaluation of DM64, an antimyotoxic protein with immunoglobulin-like construction from Didelphis marsupialis serum. Eur. J. Biochem. 269, 6052–6062 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Fernandes, C. A. H. et al. Structural Basis for the Inhibition of a Phospholipase A2-Like Toxin by Caffeic and Aristolochic Acids. PLoS One 10, e0133370 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • dos Santos, J. I. et al. Structural and Functional Studies of a Bothropic Myotoxin Complexed to Rosmarinic Acid: New Insights into Lys49-PLA2 Inhibition. PLoS One 6, e28521 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ticli, F. Okay. et al. Rosmarinic acid, a brand new snake venom phospholipase A2 inhibitor from Cordia verbenacea (Boraginaceae): antiserum motion potentiation and molecular interplay. Toxicon 46, 318–327 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Aung, H. T. et al. Biological and Pathological Studies of Rosmarinic Acid as an Inhibitor of Hemorrhagic Trimeresurus flavoviridis (habu) Venom. Toxins 2, 2478–2489 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chandra, V. et al. Structural Basis of Phospholipase A2 Inhibition for the Synthesis of Prostaglandins by the Plant Alkaloid Aristolochic Acid from a 1.7 Å Crystal Structure†,‡. Biochemistry 41, 10914–10919 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Nakamoto, M., Zhao, D., Benice, O. R., Lee, S. H. & Shea, Okay. J. Abiotic Mimic of Endogenous Tissue Inhibitors of Metalloproteinases: Engineering Synthetic Polymer Nanoparticles for Use as a Broad-Spectrum Metalloproteinase. Inhibitor. J. Am. Chem. Soc. 142, 2338–2345 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Valente, R. H., Dragulev, B., Perales, J., Fox, J. W. & Domont, G. B. BJ46a, a snake venom metalloproteinase inhibitor isolation, characterization, cloning and insights into its mechanism of motion. Eur. J. Biochem. 268, 3042–3052 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Omori-Satoh, T., Sadahiro, S., Ohsaka, A. & Murata, R. Purification and characterization of an antihemorrhagic issue within the serum of Trimeresurus flavoviridis, a crotalid. Biochim. Biophys. Acta – Protein Struct. 285, 414–426 (1972).

    Article 
    CAS 

    Google Scholar 

  • Srinivasa, V. et al. Novel Apigenin Based Small Molecule that Targets Snake Venom Metalloproteases. PLoS One 9, e106364 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Preciado, L. M., Comer, J., Núñez, V., Rey-Súarez, P. & Pereañez, J. A. Inhibition of a Snake Venom Metalloproteinase by the Flavonoid Myricetin. Mol 23, 2662 (2018).

    Article 

    Google Scholar 

  • Bala, E., Hazarika, R., Singh, P., Yasir, M. & Shrivastava, R. A organic overview of Hyaluronidase: A venom enzyme and its inhibition with crops supplies. Mater. Today Proc. 5, 6406–6412 (2018).

    Article 
    CAS 

    Google Scholar 

  • Mio, Okay. & Stern, R. Inhibitors of the hyaluronidases. Matrix Biol. 21, 31–37 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • - Advertisement -
    Pet News 2Day
    Pet News 2Dayhttps://petnews2day.com
    About the editor Hey there! I'm proud to be the editor of Pet News 2Day. With a lifetime of experience and a genuine love for animals, I bring a wealth of knowledge and passion to my role. Experience and Expertise Animals have always been a central part of my life. I'm not only the owner of a top-notch dog grooming business in, but I also have a diverse and happy family of my own. We have five adorable dogs, six charming cats, a wise old tortoise, four adorable guinea pigs, two bouncy rabbits, and even a lively flock of chickens. Needless to say, my home is a haven for animal love! Credibility What sets me apart as a credible editor is my hands-on experience and dedication. Through running my grooming business, I've developed a deep understanding of various dog breeds and their needs. I take pride in delivering exceptional grooming services and ensuring each furry client feels comfortable and cared for. Commitment to Animal Welfare But my passion extends beyond my business. Fostering dogs until they find their forever homes is something I'm truly committed to. It's an incredibly rewarding experience, knowing that I'm making a difference in their lives. Additionally, I've volunteered at animal rescue centers across the globe, helping animals in need and gaining a global perspective on animal welfare. Trusted Source I believe that my diverse experiences, from running a successful grooming business to fostering and volunteering, make me a credible editor in the field of pet journalism. I strive to provide accurate and informative content, sharing insights into pet ownership, behavior, and care. My genuine love for animals drives me to be a trusted source for pet-related information, and I'm honored to share my knowledge and passion with readers like you.
    -Advertisement-

    Latest Articles

    -Advertisement-