Saturday, May 4, 2024
Saturday, May 4, 2024
HomePet Industry NewsPet Travel NewsAxonal vitality metabolism, and the consequences in growing old and neurodegenerative ailments...

Axonal vitality metabolism, and the consequences in growing old and neurodegenerative ailments | Molecular Neurodegeneration

Date:

Related stories

-Advertisement-spot_img
-- Advertisment --
- Advertisement -
  • Erbsloh F, Bernsmeier A, Hillesheim H. The glucose consumption of the mind & its dependence on the liver. Arch Psychiatr Nervenkr Z Gesamte Neurol Psychiatr. 1958;196:611–26.

    CAS 
    PubMed 

    Google Scholar
     

  • Harris JJ, Attwell D. The energetics of CNS white matter. J Neurosci. 2012;32:356–71.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yellen G. Fueling thought: administration of glycolysis and oxidative phosphorylation in neuronal metabolism. J Cell Biol. 2018;217:2235–46.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dienel GA. Brain glucose metabolism: integration of energetics with operate. Physiol Rev. 2019;99:949–1045.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mergenthaler P, Lindauer U, Dienel GA, Meisel A. Sugar for the mind: the position of glucose in physiological and pathological mind operate. Trends Neurosci. 2013;36:587–97.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zielke HR, Zielke CL, Baab PJ. Direct measurement of oxidative metabolism within the residing mind by microdialysis: a assessment. J Neurochem. 2009;109(Suppl 1):24–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Silva B, Mantha OL, Schor J, Pascual A, Placais PY, Pavlowsky A, Preat T. Glia gasoline neurons with regionally synthesized ketone our bodies to maintain reminiscence below hunger. Nat Metab. 2022;4:213–24.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Katsu-Jimenez Y, Gimenez-Cassina A. Fibroblast progress Factor-21 promotes ketone physique utilization in neurons by means of activation of AMP-dependent kinase. Mol Cell Neurosci. 2019;101: 103415.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Divakaruni AS, Wallace M, Buren C, Martyniuk Okay, Andreyev AY, Li E, Fields JA, Cordes T, Reynolds IJ, Bloodgood BL, et al. Inhibition of the mitochondrial pyruvate service protects from excitotoxic neuronal demise. J Cell Biol. 2017;216:1091–105.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morgello S, Uson RR, Schwartz EJ, Haber RS. The human blood-brain barrier glucose transporter (GLUT1) is a glucose transporter of grey matter astrocytes. Glia. 1995;14:43–54.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Leino RL, Gerhart DZ, van Bueren AM, McCall AL, Drewes LR. Ultrastructural localization of GLUT 1 and GLUT 3 glucose transporters in rat mind. J Neurosci Res. 1997;49:617–26.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ferreira JM, Burnett AL, Rameau GA. Activity-dependent regulation of floor glucose transporter-3. J Neurosci. 2011;31:1991–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McClory H, Williams D, Sapp E, Gatune LW, Wang P, DiFiglia M, Li X. Glucose transporter 3 is a rab11-dependent trafficking cargo and its transport to the cell floor is lowered in neurons of CAG140 Huntington’s illness mice. Acta Neuropathol Commun. 2014;2:179.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ashrafi G, Wu Z, Farrell RJ, Ryan TA. GLUT4 mobilization helps energetic calls for of energetic synapses. Neuron. 2017;93(606–615): e603.


    Google Scholar
     

  • Saab AS, Tzvetavona ID, Trevisiol A, Baltan S, Dibaj P, Kusch Okay, Mobius W, Goetze B, Jahn HM, Huang W, et al. Oligodendroglial NMDA receptors regulate glucose import and axonal vitality metabolism. Neuron. 2016;91:119–32.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang L, Pavlou S, Du X, Bhuckory M, Xu H, Chen M. Glucose transporter 1 critically controls microglial activation by means of facilitating glycolysis. Mol Neurodegener. 2019;14:2.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shokhirev MN, Johnson AA. An integrative machine-learning meta-analysis of high-throughput omics knowledge identifies age-specific hallmarks of Alzheimer’s illness. Ageing Res Rev. 2022;81: 101721.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Glaab E, Schneider R. Comparative pathway and community evaluation of mind transcriptome modifications throughout grownup growing old and in Parkinson’s illness. Neurobiol Dis. 2015;74:1–13.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Christodoulou CC, Zachariou M, Tomazou M, Karatzas E, Demetriou CA, Zamba-Papanicolaou E, Spyrou GM. Investigating the transition of pre-symptomatic to symptomatic huntington’s illness standing primarily based on omics knowledge. Int J Mol Sci. 2020;21:7414.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hou Y, Dan X, Babbar M, Wei Y, Hasselbalch SG, Croteau DL, Bohr VA. Ageing as a danger issue for neurodegenerative illness. Nat Rev Neurol. 2019;15:565–81.

    Article 
    PubMed 

    Google Scholar
     

  • Davie Okay, Janssens J, Koldere D, De Waegeneer M, Pech U, Kreft L, Aibar S, Makhzami S, Christiaens V, Bravo Gonzalez-Blas C, et al. A single-cell transcriptome atlas of the growing old drosophila mind. Cell. 2018;174(982–998): e920.


    Google Scholar
     

  • Ximerakis M, Lipnick SL, Innes BT, Simmons SK, Adiconis X, Dionne D, Mayweather BA, Nguyen L, Niziolek Z, Ozek C, et al. Single-cell transcriptomic profiling of the growing old mouse mind. Nat Neurosci. 2019;22:1696–708.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ivanisevic J, Stauch KL, Petrascheck M, Benton HP, Epstein AA, Fang M, Gorantla S, Tran M, Hoang L, Kurczy ME, et al. Metabolic drift within the growing old mind. Aging (Albany NY). 2016;8:1000–20.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Currais A, Huang L, Goldberg J, Petrascheck M, Ates G, Pinto-Duarte A, Shokhirev MN, Schubert D, Maher P. Elevating acetyl-CoA ranges reduces facets of mind growing old. Elife. 2019;8:e47866.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ding J, Ji J, Rabow Z, Shen T, Folz J, Brydges CR, Fan S, Lu X, Mehta S, Showalter MR, et al. A metabolome atlas of the growing old mouse mind. Nat Commun. 2021;12:6021.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Popa-Wagner A, Dumitrascu DI, Capitanescu B, Petcu EB, Surugiu R, Fang WH, Dumbrava DA. Dietary habits, life-style components and neurodegenerative ailments. Neural Regen Res. 2020;15:394–400.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cannon JR, Greenamyre JT. The position of environmental exposures in neurodegeneration and neurodegenerative ailments. Toxicol Sci. 2011;124:225–50.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bertram L, Tanzi RE. The genetic epidemiology of neurodegenerative illness. J Clin Invest. 2005;115:1449–57.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Berson A, Nativio R, Berger SL, Bonini NM. Epigenetic regulation in neurodegenerative ailments. Trends Neurosci. 2018;41:587–98.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cunnane SC, Trushina E, Morland C, Prigione A, Casadesus G, Andrews ZB, Beal MF, Bergersen LH, Brinton RD, de la Monte S, et al. Brain vitality rescue: an rising therapeutic idea for neurodegenerative problems of ageing. Nat Rev Drug Discov. 2020;19:609–33.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pandya VA, Patani R. Decoding the connection between ageing and amyotrophic lateral sclerosis: a mobile perspective. Brain. 2020;143:1057–72.

    Article 
    PubMed 

    Google Scholar
     

  • Ye F, Funk Q, Rockers E, Shulman JM, Masdeu JC, Pascual B. Alzheimer’s illness neuroimaging I: in alzheimer-prone mind areas, metabolism and risk-gene expression are strongly correlated. Brain Commun. 2022;4:fcac216.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kalpouzos G, Chetelat G, Baron JC, Landeau B, Mevel Okay, Godeau C, Barre L, Constans JM, Viader F, Eustache F, Desgranges B. Voxel-based mapping of mind grey matter quantity and glucose metabolism profiles in regular growing old. Neurobiol Aging. 2009;30:112–24.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Oh H, Madison C, Baker S, Rabinovici G, Jagust W. Dynamic relationships between age, amyloid-beta deposition, and glucose metabolism hyperlink to the regional vulnerability to Alzheimer’s illness. Brain. 2016;139:2275–89.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Krell-Roesch J, Syrjanen JA, Vassilaki M, Lowe VJ, Vemuri P, Mielke MM, Machulda MM, Stokin GB, Christianson TJ, Kremers WK, et al. Brain regional glucose metabolism, neuropsychiatric signs, and the danger of incident gentle cognitive impairment: the mayo clinic research of growing old. Am J Geriatr Psychiatry. 2021;29:179–91.

    Article 
    PubMed 

    Google Scholar
     

  • Baran TM, Lin FV. Alzheimer’s illness neuroimaging I: amyloid and FDG PET of profitable cognitive growing old: world and cingulate-specific variations. J Alzheimers Dis. 2018;66:307–18.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kelley CM, Ginsberg SD, Liang WS, Counts SE, Mufson EJ. Posterior cingulate cortex reveals an expression profile of resilience in cognitively intact elders. Brain Commun. 2022;4:fcac162.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leech R, Sharp DJ. The position of the posterior cingulate cortex in cognition and illness. Brain. 2014;137:12–32.

    Article 
    PubMed 

    Google Scholar
     

  • Crossley NA, Mechelli A, Scott J, Carletti F, Fox PT, McGuire P, Bullmore ET. The hubs of the human connectome are typically implicated within the anatomy of mind problems. Brain. 2014;137:2382–95.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hagmann P, Cammoun L, Gigandet X, Meuli R, Honey CJ, Wedeen VJ, Sporns O. Mapping the structural core of human cerebral cortex. PLoS Biol. 2008;6: e159.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lafourcade M, van der Goes MH, Vardalaki D, Brown NJ, Voigts J, Yun DH, Kim ME, Ku T, Harnett MT. Differential dendritic integration of long-range inputs in affiliation cortex through subcellular modifications in synaptic AMPA-to-NMDA receptor ratio. Neuron. 2022;110(1532–1546): e1534.


    Google Scholar
     

  • Minoshima S, Giordani B, Berent S, Frey KA, Foster NL, Kuhl DE. Metabolic discount within the posterior cingulate cortex in very early Alzheimer’s illness. Ann Neurol. 1997;42:85–94.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yakushev I, Schreckenberger M, Muller MJ, Schermuly I, Cumming P, Stoeter P, Gerhard A, Fellgiebel A. Functional implications of hippocampal degeneration in early Alzheimer’s illness: a mixed DTI and PET research. Eur J Nucl Med Mol Imaging. 2011;38:2219–27.

    Article 
    PubMed 

    Google Scholar
     

  • Roy M, Rheault F, Croteau E, Castellano CA, Fortier M, St-Pierre V, Houde JC, Turcotte EE, Bocti C, Fulop T, et al. Fascicle- and glucose-specific deterioration in white matter vitality provide in Alzheimer’s illness. J Alzheimers Dis. 2020;76:863–81.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bateman RJ, Xiong C, Benzinger TL, Fagan AM, Goate A, Fox NC, Marcus DS, Cairns NJ, Xie X, Blazey TM, et al. Clinical and biomarker modifications in dominantly inherited Alzheimer’s illness. N Engl J Med. 2012;367:795–804.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Drzezga A, Becker JA, Van Dijk KR, Sreenivasan A, Talukdar T, Sullivan C, Schultz AP, Sepulcre J, Putcha D, Greve D, et al. Neuronal dysfunction and disconnection of cortical hubs in non-demented topics with elevated amyloid burden. Brain. 2011;134:1635–46.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Small GW, Mazziotta JC, Collins MT, Baxter LR, Phelps ME, Mandelkern MA, Kaplan A, La Rue A, Adamson CF, Chang L, et al. Apolipoprotein E kind 4 allele and cerebral glucose metabolism in kinfolk in danger for familial Alzheimer illness. JAMA. 1995;273:942–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Small GW, Ercoli LM, Silverman DH, Huang SC, Komo S, Bookheimer SY, Lavretsky H, Miller Okay, Siddarth P, Rasgon NL, et al. Cerebral metabolic and cognitive decline in individuals at genetic danger for Alzheimer’s illness. Proc Natl Acad Sci U S A. 2000;97:6037–42.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reiman EM, Caselli RJ, Yun LS, Chen Okay, Bandy D, Minoshima S, Thibodeau SN, Osborne D. Preclinical proof of Alzheimer’s illness in individuals homozygous for the ε4 allele for apolipoprotein E. J N Engl J Med. 1996;334:752–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Douaud G, Jbabdi S, Behrens TE, Menke RA, Gass A, Monsch AU, Rao A, Whitcher B, Kindlmann G, Matthews PM, Smith S. DTI measures in crossing-fibre areas: elevated diffusion anisotropy reveals early white matter alteration in MCI and gentle Alzheimer’s illness. Neuroimage. 2011;55:880–90.

    Article 
    PubMed 

    Google Scholar
     

  • Araque Caballero MA, Suarez-Calvet M, Duering M, Franzmeier N, Benzinger T, Fagan AM, Bateman RJ, Jack CR, Levin J, Dichgans M, et al. White matter diffusion alterations precede symptom onset in autosomal dominant Alzheimer’s illness. Brain. 2018;141:3065–80.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wen Q, Mustafi SM, Li J, Risacher SL, Tallman E, Brown SA, West JD, Harezlak J, Farlow MR, Unverzagt FW, et al. White matter alterations in early-stage Alzheimer’s illness: a tract-specific research. Alzheimers Dement (Amst). 2019;11:576–87.

    Article 
    PubMed 

    Google Scholar
     

  • Matthews DC, Lerman H, Lukic A, Andrews RD, Mirelman A, Wernick MN, Giladi N, Strother SC, Evans KC, Cedarbaum JM, Even-Sapir E. FDG PET Parkinson’s disease-related sample as a biomarker for scientific trials in early stage illness. Neuroimage Clin. 2018;20:572–9.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ciarmiello A, Cannella M, Lastoria S, Simonelli M, Frati L, Rubinsztein DC, Squitieri F. Brain white-matter quantity loss and glucose hypometabolism precede the scientific signs of Huntington’s illness. J Nucl Med. 2006;47:215–22.

    CAS 
    PubMed 

    Google Scholar
     

  • Diehl-Schmid J, Licata A, Goldhardt O, Forstl H, Yakushew I, Otto M, Anderl-Straub S, Beer A, Ludolph AC, Landwehrmeyer GB, et al. FDG-PET underscores the important thing position of the thalamus in frontotemporal lobar degeneration brought on by C9ORF72 mutations. Transl Psychiatry. 2019;9:54.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cistaro A, Valentini MC, Chio A, Nobili F, Calvo A, Moglia C, Montuschi A, Morbelli S, Salmaso D, Fania P, et al. Brain hypermetabolism in amyotrophic lateral sclerosis: a FDG PET research in ALS of spinal and bulbar onset. Eur J Nucl Med Mol Imaging. 2012;39:251–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang M, Liu Okay, Pan J, Li J, Sun P, Zhang Y, Li L, Guo W, Xin Q, Zhao Z, et al. Brain-wide projection reconstruction of single functionally outlined neurons. Nat Commun. 2022;13:1531.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Winnubst J, Bas E, Ferreira TA, Wu Z, Economo MN, Edson P, Arthur BJ, Bruns C, Rokicki Okay, Schauder D, et al. Reconstruction of 1,000 projection neurons reveals new cell sorts and organization of long-range connectivity within the mouse mind. Cell. 2019;179(268–281): e213.


    Google Scholar
     

  • Peng H, Xie P, Liu L, Kuang X, Wang Y, Qu L, Gong H, Jiang S, Li A, Ruan Z, et al. Morphological variety of single neurons in molecularly outlined cell sorts. Nature. 2021;598:174–81.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Salvadores N, Sanhueza M, Manque P, Court FA. Axonal degeneration throughout growing old and its purposeful position in neurodegenerative problems. Front Neurosci. 2017;11:451.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Groh J, Knöpper Okay, Arampatzi P, Yuan X, Lößlein L, Saliba A-E, Kastenmüller W, Martini R. Accumulation of cytotoxic T cells within the aged CNS results in axon degeneration and contributes to cognitive and motor decline. Nature Aging. 2021;1:357–67.

    Article 
    PubMed 

    Google Scholar
     

  • Valentine WM. Toxic peripheral neuropathies: brokers and mechanisms. Toxicol Pathol. 2020;48:152–73.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Coleman MP. The challenges of axon survival: introduction to the particular subject on axonal degeneration. Exp Neurol. 2013;246:1–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang J, Long B, Li A, Sun Q, Tian J, Luo T, Ding Z, Gong H, Li X. Whole-brain three-dimensional profiling reveals mind area particular axon vulnerability in 5xFAD mouse mannequin. Front Neuroanat. 2020;14: 608177.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stokin GB, Lillo C, Falzone TL, Brusch RG, Rockenstein E, Mount SL, Raman R, Davies P, Masliah E, Williams DS. Axonopathy and transport deficits early within the pathogenesis of Alzheimer’s illness. Science. 2005;307:1282–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Harris JJ, Jolivet R, Attwell D. Synaptic vitality use and provide. Neuron. 2012;75:762–77.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Beirowski B. Emerging proof for compromised axonal bioenergetics and axoglial metabolic coupling as drivers of neurodegeneration. Neurobiol Dis. 2022;170: 105751.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pacelli C, Giguere N, Bourque MJ, Levesque M, Slack RS, Trudeau LE. Elevated mitochondrial bioenergetics and axonal arborization measurement are key contributors to the vulnerability of dopamine neurons. Curr Biol. 2015;25:2349–60.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vilchez D, Ros S, Cifuentes D, Pujadas L, Valles J, Garcia-Fojeda B, Criado-Garcia O, Fernandez-Sanchez E, Medrano-Fernandez I, Dominguez J, et al. Mechanism suppressing glycogen synthesis in neurons and its demise in progressive myoclonus epilepsy. Nat Neurosci. 2007;10:1407–13.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schonfeld P, Reiser G. Why does mind metabolism not favor burning of fatty acids to offer vitality? Reflections on disadvantages of the usage of free fatty acids as gasoline for mind. J Cereb Blood Flow Metab. 2013;33:1493–9.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Turner NL, Macrina T, Bae JA, Yang R, Wilson AM, Schneider-Mizell C, Lee Okay, Lu R, Wu J, Bodor AL, et al. Reconstruction of neocortex: Organelles, compartments, cells, circuits, and exercise. Cell. 2022;185(1082–1100): e1024.


    Google Scholar
     

  • Delgado T, Petralia RS, Freeman DW, Sedlacek M, Wang YX, Brenowitz SD, Sheu SH, Gu JW, Kapogiannis D, Mattson MP, Yao PJ. Comparing 3D ultrastructure of presynaptic and postsynaptic mitochondria. Biol Open. 2019;8:bio044834.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Faitg J, Lacefield C, Davey T, White Okay, Laws R, Kosmidis S, Reeve AK, Kandel ER, Vincent AE, Picard M. 3D neuronal mitochondrial morphology in axons, dendrites, and somata of the growing old mouse hippocampus. Cell Rep. 2021;36: 109509.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lewis TL Jr, Kwon SK, Lee A, Shaw R, Polleux F. MFF-dependent mitochondrial fission regulates presynaptic launch and axon branching by limiting axonal mitochondria measurement. Nat Commun. 2018;9:5008.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Santuy A, Turegano-Lopez M, Rodriguez JR, Alonso-Nanclares L, DeFelipe J, Merchan-Perez A. A quantitative research on the distribution of mitochondria within the neuropil of the juvenile rat somatosensory cortex. Cereb Cortex. 2018;28:3673–84.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Overly CC, Rieff HI, Hollenbeck PJ. Organelle motility and metabolism in axons vs dendrites of cultured hippocampal neurons. J Cell Sci. 1996;109(Pt 5):971–80.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lewis TL Jr, Turi GF, Kwon SK, Losonczy A, Polleux F. Progressive lower of mitochondrial motility throughout maturation of cortical axons in vitro and in vivo. Curr Biol. 2016;26:2602–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vagnoni A, Hoffmann PC, Bullock SL. Reducing Lissencephaly-1 ranges augments mitochondrial transport and has a protecting impact in grownup Drosophila neurons. J Cell Sci. 2016;129:178–90.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vagnoni A, Bullock SL. A cAMP/PKA/Kinesin-1 axis promotes the axonal transport of mitochondria in growing old drosophila neurons. Curr Biol. 2018;28(1265–1272): e1264.


    Google Scholar
     

  • Takihara Y, Inatani M, Eto Okay, Inoue T, Kreymerman A, Miyake S, Ueno S, Nagaya M, Nakanishi A, Iwao Okay, et al. In vivo imaging of axonal transport of mitochondria within the diseased and aged mammalian CNS. Proc Natl Acad Sci U S A. 2015;112:10515–20.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rangaraju V, Lauterbach M, Schuman EM. Spatially steady mitochondrial compartments gasoline native translation throughout plasticity. Cell. 2019;176(73–84): e15.


    Google Scholar
     

  • Zhang M, Cheng X, Dang R, Zhang W, Zhang J, Yao Z. Lactate deficit in an alzheimer illness mouse mannequin: the connection with neuronal harm. J Neuropathol Exp Neurol. 2018;77:1163–76.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • He Okay, Nie L, Zhou Q, Rahman SU, Liu J, Yang X, Li S. Proteomic profiles of the early mitochondrial modifications in APP/PS1 and ApoE4 transgenic mice fashions of Alzheimer’s illness. J Proteome Res. 2019;18:2632–42.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gonzalez-Dominguez R, Garcia-Barrera T, Vitorica J, Gomez-Ariza JL. Region-specific metabolic alterations within the mind of the APP/PS1 transgenic mice of Alzheimer’s illness. Biochim Biophys Acta. 2014;1842:2395–402.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wirths O, Weis J, Kayed R, Saido TC, Bayer TA. Age-dependent axonal degeneration in an Alzheimer mouse mannequin. Neurobiol Aging. 2007;28:1689–99.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou Q, Zheng H, Chen J, Li C, Du Y, Xia H, Gao H. Metabolic destiny of glucose within the mind of APP/PS1 transgenic mice at 10 months of age: a (13)C NMR metabolomic research. Metab Brain Dis. 2018;33:1661–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wirths O, Weis J, Szczygielski J, Multhaup G, Bayer TA. Axonopathy in an APP/PS1 transgenic mouse mannequin of Alzheimer’s illness. Acta Neuropathol. 2006;111:312–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li Z, Zhang Y, Zheng Y, Liu W, Zhang X, Li W, Zhang D, Cai Q, Wang S, Meng X, Huang G. Intranasal 15d-PGJ2 ameliorates mind glucose hypometabolism through PPARgamma-dependent activation of PGC-1alpha/GLUT4 signalling in APP/PS1 transgenic mice. Neuropharmacology. 2021;196: 108685.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu YJ, Mei Y, Shi XQ, Zhang YF, Wang XY, Guan L, Wang Q, Pan HF. Albiflorin ameliorates reminiscence deficits in APP/PS1 transgenic mice through ameliorating mitochondrial dysfunction. Brain Res. 2019;1719:113–23.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu W, Zhuo P, Li L, Jin H, Lin B, Zhang Y, Liang S, Wu J, Huang J, Wang Z, et al. Activation of mind glucose metabolism ameliorating cognitive impairment in APP/PS1 transgenic mice by electroacupuncture. Free Radic Biol Med. 2017;112:174–90.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stojakovic A, Trushin S, Sheu A, Khalili L, Chang SY, Li X, Christensen T, Salisbury JL, Geroux RE, Gateno B, et al. Partial inhibition of mitochondrial complicated I ameliorates Alzheimer’s illness pathology and cognition in APP/PS1 feminine mice. Commun Biol. 2021;4:61.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Piquet J, Toussay X, Hepp R, Lerchundi R, Le Douce J, Faivre E, Guiot E, Bonvento G, Cauli B. Supragranular pyramidal cells exhibit early metabolic alterations within the 3xTg-AD mouse mannequin of Alzheimer’s illness. Front Cell Neurosci. 2018;12:216.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Singulani MP, Pereira CPM, Ferreira AFF, Garcia PC, Ferrari GD, Alberici LC, Britto LR. Impairment of PGC-1alpha-mediated mitochondrial biogenesis precedes mitochondrial dysfunction and Alzheimer’s pathology within the 3xTg mouse mannequin of Alzheimer’s illness. Exp Gerontol. 2020;133: 110882.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nicholson RM, Kusne Y, Nowak LA, LaFerla FM, Reiman EM, Valla J. Regional cerebral glucose uptake within the 3xTG mannequin of Alzheimer’s illness highlights widespread regional vulnerability throughout AD mouse fashions. Brain Res. 2010;1347:179–85.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Desai MK, Sudol KL, Janelsins MC, Mastrangelo MA, Frazer ME, Bowers WJ. Triple-transgenic Alzheimer’s illness mice exhibit region-specific abnormalities in mind myelination patterns previous to look of amyloid and tau pathology. Glia. 2009;57:54–65.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yao J, Irwin RW, Zhao L, Nilsen J, Hamilton RT, Brinton RD. Mitochondrial bioenergetic deficit precedes Alzheimer’s pathology in feminine mouse mannequin of Alzheimer’s illness. Proc Natl Acad Sci U S A. 2009;106:14670–5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim J, Choi IY, Michaelis ML, Lee P. Quantitative in vivo measurement of early axonal transport deficits in a triple transgenic mouse mannequin of Alzheimer’s illness utilizing manganese-enhanced MRI. Neuroimage. 2011;56:1286–92.

    Article 
    PubMed 

    Google Scholar
     

  • Stojakovic A, Chang SY, Nesbitt J, Pichurin NP, Ostroot MA, Aikawa T, Kanekiyo T, Trushina E. Partial inhibition of mitochondrial complicated I reduces tau pathology and improves vitality homeostasis and synaptic operate in 3xTg-AD mice. J Alzheimers Dis. 2021;79:335–53.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Correia SC, Machado NJ, Alves MG, Oliveira PF, Moreira PI. Intermittent hypoxic conditioning rescues cognition and mitochondrial bioenergetic profile within the triple transgenic mouse mannequin of Alzheimer’s illness. Int J Mol Sci. 2021;22:461.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Andersen JV, Skotte NH, Christensen SK, Polli FS, Shabani M, Markussen KH, Haukedal H, Westi EW, Diaz-delCastillo M, Sun RC, et al. Hippocampal disruptions of synaptic and astrocyte metabolism are major occasions of early amyloid pathology within the 5xFAD mouse mannequin of Alzheimer’s illness. Cell Death Dis. 2021;12:954.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gowrishankar S, Yuan P, Wu Y, Schrag M, Paradise S, Grutzendler J, De Camilli P, Ferguson SM. Massive accumulation of luminal protease-deficient axonal lysosomes at Alzheimer’s illness amyloid plaques. Proc Natl Acad Sci U S A. 2015;112:E3699-3708.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hong I, Kang T, Yoo Y, Park R, Lee J, Lee S, Kim J, Song B, Kim SY, Moon M, et al. Quantitative proteomic evaluation of the hippocampus within the 5XFAD mouse mannequin at early levels of Alzheimer’s illness pathology. J Alzheimers Dis. 2013;36:321–34.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang L, Guo L, Lu L, Sun H, Shao M, Beck SJ, Li L, Ramachandran J, Du Y, Du H. Synaptosomal mitochondrial dysfunction in 5xFAD mouse mannequin of Alzheimer’s illness. PLoS ONE. 2016;11: e0150441.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Beck SJ, Guo L, Phensy A, Tian J, Wang L, Tandon N, Gauba E, Lu L, Pascual JM, Kroener S, Du H. Deregulation of mitochondrial F1FO-ATP synthase through OSCP in Alzheimer’s illness. Nat Commun. 2016;7:11483.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chu TH, Cummins Okay, Sparling JS, Tsutsui S, Brideau C, Nilsson KPR, Joseph JT, Stys PK. Axonal and myelinic pathology in 5xFAD Alzheimer’s mouse spinal twine. PLoS ONE. 2017;12: e0188218.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sadleir KR, Kandalepas PC, Buggia-Prevot V, Nicholson DA, Thinakaran G, Vassar R. Presynaptic dystrophic neurites surrounding amyloid plaques are websites of microtubule disruption, BACE1 elevation, and elevated Abeta era in Alzheimer’s illness. Acta Neuropathol. 2016;132:235–56.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Franke TN, Irwin C, Bayer TA, Brenner W, Beindorff N, Bouter C, Bouter Y. In vivo imaging With (18)F-FDG- and (18)F-Florbetaben-PET/MRI detects pathological modifications within the mind of the generally used 5XFAD mouse mannequin of Alzheimer’s illness. Front Med (Lausanne). 2020;7:529.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bouter C, Irwin C, Franke TN, Beindorff N, Bouter Y. Quantitative mind positron emission tomography in feminine 5XFAD Alzheimer mice: pathological options and sex-specific alterations. Front Med (Lausanne). 2021;8: 745064.

    Article 
    PubMed 

    Google Scholar
     

  • Andersen JV, Christensen SK, Westi EW, Diaz-delCastillo M, Tanila H, Schousboe A, Aldana BI, Waagepetersen HS. Deficient astrocyte metabolism impairs glutamine synthesis and neurotransmitter homeostasis in a mouse mannequin of Alzheimer’s illness. Neurobiol Dis. 2021;148: 105198.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gauba E, Sui S, Tian J, Driskill C, Jia Okay, Yu C, Rughwani T, Wang Q, Kroener S, Guo L, Du H. Modulation of OSCP mitigates mitochondrial and synaptic deficits in a mouse mannequin of Alzheimer’s pathology. Neurobiol Aging. 2021;98:63–77.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Whitmore CA, Haynes JR, Behof WJ, Rosenberg AJ, Tantawy MN, Hachey BC, Wadzinski BE, Spiller BW, Peterson TE, Paffenroth KC, et al. Longitudinal consumption of ergothioneine reduces oxidative stress and amyloid plaques and restores glucose metabolism within the 5XFAD mouse mannequin of Alzheimer’s illness. Pharmaceuticals (Basel). 2022;15:742.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim J, Kang S, Chang KA. Effect of cx-DHED on irregular glucose transporter expression induced by AD pathologies within the 5xFAD mouse mannequin. Int J Mol Sci. 2022;23:10602.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zheng J, Xie Y, Ren L, Qi L, Wu L, Pan X, Zhou J, Chen Z, Liu L. GLP-1 improves the supportive capability of astrocytes to neurons by selling cardio glycolysis in Alzheimer’s illness. Mol Metab. 2021;47: 101180.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Merino-Galan L, Jimenez-Urbieta H, Zamarbide M, Rodriguez-Chinchilla T, Belloso-Iguerategui A, Santamaria E, Fernandez-Irigoyen J, Aiastui A, Doudnikoff E, Bezard E, et al. Striatal synaptic bioenergetic and autophagic decline in premotor experimental parkinsonism. Brain. 2022;145:2092–107.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Devrome M, Casteels C, Van der Perren A, Van Laere Okay, Baekelandt V, Koole M. Identifying a glucose metabolic mind sample in an adeno-associated viral vector primarily based rat mannequin for Parkinson’s illness utilizing (18)F-FDG PET imaging. Sci Rep. 2019;9:12368.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koprich JB, Johnston TH, Reyes MG, Sun X, Brotchie JM. Expression of human A53T alpha-synuclein within the rat substantia nigra utilizing a novel AAV1/2 vector produces a quickly evolving pathology with protein aggregation, dystrophic neurite structure and nigrostriatal degeneration with potential to mannequin the pathology of Parkinson’s illness. Mol Neurodegener. 2010;5:43.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chung CY, Koprich JB, Siddiqi H, Isacson O. Dynamic modifications in presynaptic and axonal transport proteins mixed with striatal neuroinflammation precede dopaminergic neuronal loss in a rat mannequin of AAV alpha-synucleinopathy. J Neurosci. 2009;29:3365–73.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen L, Xie Z, Turkson S, Zhuang X. A53T human alpha-synuclein overexpression in transgenic mice induces pervasive mitochondria macroautophagy defects previous dopamine neuron degeneration. J Neurosci. 2015;35:890–905.

    Article 
    PubMed 

    Google Scholar
     

  • Graham SF, Rey NL, Yilmaz A, Kumar P, Madaj Z, Maddens M, Bahado-Singh RO, Becker Okay, Schulz E, Meyerdirk LK, et al. Biochemical profiling of the mind and blood metabolome in a mouse mannequin of prodromal parkinson’s illness reveals distinct metabolic profiles. J Proteome Res. 2018;17:2460–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bido S, Soria FN, Fan RZ, Bezard E, Tieu Okay. Mitochondrial division inhibitor-1 is neuroprotective within the A53T-alpha-synuclein rat mannequin of Parkinson’s illness. Sci Rep. 2017;7:7495.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Choi ML, Chappard A, Singh BP, Maclachlan C, Rodrigues M, Fedotova EI, Berezhnov AV, De S, Peddie CJ, Athauda D, et al. Pathological structural conversion of alpha-synuclein on the mitochondria induces neuronal toxicity. Nat Neurosci. 2022;25:1134–48.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Choubey V, Safiulina D, Vaarmann A, Cagalinec M, Wareski P, Kuum M, Zharkovsky A, Kaasik A. Mutant A53T alpha-synuclein induces neuronal demise by growing mitochondrial autophagy. J Biol Chem. 2011;286:10814–24.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fernandes HJR, Patikas N, Foskolou S, Field SF, Park JE, Byrne ML, Bassett AR, Metzakopian E. Single-cell transcriptomics of parkinson’s illness human in vitro fashions reveals dopamine neuron-specific stress responses. Cell Rep. 2020;33: 108263.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kouroupi G, Taoufik E, Vlachos IS, Tsioras Okay, Antoniou N, Papastefanaki F, Chroni-Tzartou D, Wrasidlo W, Bohl D, Stellas D, et al. Defective synaptic connectivity and axonal neuropathology in a human iPSC-based mannequin of familial Parkinson’s illness. Proc Natl Acad Sci U S A. 2017;114:E3679–88.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koch JC, Bitow F, Haack J, d’Hedouville Z, Zhang JN, Tonges L, Michel U, Oliveira LM, Jovin TM, Liman J, et al. Alpha-Synuclein impacts neurite morphology, autophagy, vesicle transport and axonal degeneration in CNS neurons. Cell Death Dis. 2015;6: e1811.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu HF, Ho PW, Leung GC, Lam CS, Pang SY, Li L, Kung MH, Ramsden DB, Ho SL. Combined LRRK2 mutation, growing old and continual low dose oral rotenone as a mannequin of parkinson’s illness. Sci Rep. 2017;7:40887.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tagliaferro P, Kareva T, Oo TF, Yarygina O, Kholodilov N, Burke RE. An early axonopathy in a hLRRK2(R1441G) transgenic mannequin of parkinson illness. Neurobiol Dis. 2015;82:359–71.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen ML, Wu RM. Homozygous mutation of the LRRK2 ROC area as a novel genetic mannequin of parkinsonism. J Biomed Sci. 2022;29:60.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu J, Tao X, Zhu Y, Li C, Ruan Okay, Diaz-Perez Z, Rai P, Wang H, Zhai RG. NMNAT promotes glioma progress by means of regulating post-translational modifications of P53 to inhibit apoptosis. Elife. 2021;10:e70046.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang X, Yan MH, Fujioka H, Liu J, Wilson-Delfosse A, Chen SG, Perry G, Casadesus G, Zhu X. LRRK2 regulates mitochondrial dynamics and performance by means of direct interplay with DLP1. Hum Mol Genet. 2012;21:1931–44.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Howlett EH, Jensen N, Belmonte F, Zafar F, Hu X, Kluss J, Schule B, Kaufman BA, Greenamyre JT, Sanders LH. LRRK2 G2019S-induced mitochondrial DNA harm is LRRK2 kinase dependent and inhibition restores mtDNA integrity in parkinson’s illness. Hum Mol Genet. 2017;26:4340–51.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schwab AJ, Sison SL, Meade MR, Broniowska KA, Corbett JA, Ebert AD. Decreased sirtuin deacetylase exercise in LRRK2 G2019S iPSC-derived dopaminergic neurons. Stem Cell Reports. 2017;9:1839–52.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boecker CA, Goldsmith J, Dou D, Cajka GG, Holzbaur ELF. Increased LRRK2 kinase exercise alters neuronal autophagy by disrupting the axonal transport of autophagosomes. Curr Biol. 2021;31(2140–2154): e2146.


    Google Scholar
     

  • Tsang TM, Woodman B, McLoughlin GA, Griffin JL, Tabrizi SJ, Bates GP, Holmes E. Metabolic characterization of the R6/2 transgenic mouse mannequin of Huntington’s illness by high-resolution MAS 1H NMR spectroscopy. J Proteome Res. 2006;5:483–92.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cepeda-Prado E, Popp S, Khan U, Stefanov D, Rodriguez J, Menalled LB, Dow-Edwards D, Small SA, Moreno H. R6/2 Huntington’s illness mice develop early and progressive irregular mind metabolism and seizures. J Neurosci. 2012;32:6456–67.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gatto RG, Ye AQ, Colon-Perez L, Mareci TH, Lysakowski A, Price SD, Brady ST, Karaman M, Morfini G, Magin RL. Detection of axonal degeneration in a mouse mannequin of Huntington’s illness: comparability between diffusion tensor imaging and anomalous diffusion metrics. MAGMA. 2019;32:461–71.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Perluigi M, Poon HF, Maragos W, Pierce WM, Klein JB, Calabrese V, Cini C, De Marco C, Butterfield DA. Proteomic evaluation of protein expression and oxidative modification in r6/2 transgenic mice: a mannequin of Huntington illness. Mol Cell Proteomics. 2005;4:1849–61.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wade A, Jacobs P, Morton AJ. Atrophy and degeneration in sciatic nerve of presymptomatic mice carrying the Huntington’s illness mutation. Brain Res. 2008;1188:61–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Acevedo-Torres Okay, Berrios L, Rosario N, Dufault V, Skatchkov S, Eaton MJ, Torres-Ramos CA, Ayala-Torres S. Mitochondrial DNA harm is a trademark of chemically induced and the R6/2 transgenic mannequin of Huntington’s illness. DNA Repair (Amst). 2009;8:126–36.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hering T, Kojer Okay, Birth N, Hallitsch J, Taanman JW, Orth M. Mitochondrial cristae remodelling is related to disrupted OPA1 oligomerisation within the Huntington’s illness R6/2 fragment mannequin. Exp Neurol. 2017;288:167–75.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Johri A, Calingasan NY, Hennessey TM, Sharma A, Yang L, Wille E, Chandra A, Beal MF. Pharmacologic activation of mitochondrial biogenesis exerts widespread useful results in a transgenic mouse mannequin of Huntington’s illness. Hum Mol Genet. 2012;21:1124–37.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Magrane J, Cortez C, Gan WB, Manfredi G. Abnormal mitochondrial transport and morphology are widespread pathological denominators in SOD1 and TDP43 ALS mouse fashions. Hum Mol Genet. 2014;23:1413–24.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lim MA, Selak MA, Xiang Z, Krainc D, Neve RL, Kraemer BC, Watts JL, Kalb RG. Reduced exercise of AMP-activated protein kinase protects in opposition to genetic fashions of motor neuron illness. J Neurosci. 2012;32:1123–41.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fischer LR, Culver DG, Tennant P, Davis AA, Wang M, Castellano-Sanchez A, Khan J, Polak MA, Glass JD. Amyotrophic lateral sclerosis is a distal axonopathy: proof in mice and man. Exp Neurol. 2004;185:232–40.

    Article 
    PubMed 

    Google Scholar
     

  • Fischer TD, Dash PK, Liu J, Waxham MN. Morphology of mitochondria in spatially restricted axons revealed by cryo-electron tomography. PLoS Biol. 2018;16: e2006169.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vincent AE, White Okay, Davey T, Philips J, Ogden RT, Lawless C, Warren C, Hall MG, Ng YS, Falkous G, et al. Quantitative 3D mapping of the human skeletal muscle mitochondrial community. Cell Rep. 2019;26(996–1009): e1004.


    Google Scholar
     

  • Attwell D, Laughlin SB. An vitality price range for signaling within the gray matter of the mind. J Cereb Blood Flow Metab. 2001;21:1133–45.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Engl E, Attwell D. Non-signalling vitality use within the mind. J Physiol. 2015;593:3417–29.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Call CL, Bergles DE. Cortical neurons exhibit various myelination patterns that scale between mouse mind areas and regenerate after demyelination. Nat Commun. 2021;12:4767.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kapfhammer JP, Schwab ME. Inverse patterns of myelination and GAP-43 expression within the grownup CNS: neurite progress inhibitors as regulators of neuronal plasticity? J Comp Neurol. 1994;340:194–206.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Morrison BM, Lee Y, Rothstein JD. Oligodendroglia: metabolic supporters of axons. Trends Cell Biol. 2013;23:644–51.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Philips T, Rothstein JD. Oligodendroglia: metabolic supporters of neurons. J Clin Invest. 2017;127:3271–80.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Diaz-Garcia CM, Yellen G. Neurons depend on glucose slightly than astrocytic lactate throughout stimulation. J Neurosci Res. 2019;97:883–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hinckelmann MV, Virlogeux A, Niehage C, Poujol C, Choquet D, Hoflack B, Zala D, Saudou F. Self-propelling vesicles outline glycolysis because the minimal vitality equipment for neuronal transport. Nat Commun. 2016;7:13233.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zala D, Hinckelmann MV, Yu H, da Lyra Cunha MM, Liot G, Cordelieres FP, Marco S, Saudou F. Vesicular glycolysis supplies on-board vitality for quick axonal transport. Cell. 2013;152:479–91.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Meyer N, Richter N, Fan Z, Siemonsmeier G, Pivneva T, Jordan P, Steinhauser C, Semtner M, Nolte C, Kettenmann H. Oligodendrocytes within the mouse corpus callosum keep axonal operate by supply of glucose. Cell Rep. 2018;22:2383–94.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rasband MN. The axon preliminary section and the upkeep of neuronal polarity. Nat Rev Neurosci. 2010;11:552–62.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ju H, Hines ML, Yu Y. Cable vitality operate of cortical axons. Sci Rep. 2016;6:29686.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bender KJ, Trussell LO. The physiology of the axon preliminary section. Annu Rev Neurosci. 2012;35:249–65.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tjiang N, Zempel H. A mitochondria cluster on the proximal axon preliminary section controls axodendritic TAU trafficking in rodent major and human iPSC-derived neurons. Cell Mol Life Sci. 2022;79:120.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meyer DJ, Diaz-Garcia CM, Nathwani N, Rahman M, Yellen G. The Na+/Okay+ pump dominates management of glycolysis in hippocampal dentate granule cells. Elife. 2022;11:e81645.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hamdan H, Lim BC, Torii T, Joshi A, Konning M, Smith C, Palmer DJ, Ng P, Leterrier C, Oses-Prieto JA, et al. Mapping axon preliminary section construction and performance by multiplexed proximity biotinylation. Nat Commun. 2020;11:100.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rangaraju V, Lewis TL Jr, Hirabayashi Y, Bergami M, Motori E, Cartoni R, Kwon SK, Courchet J. Pleiotropic mitochondria: the affect of mitochondria on neuronal improvement and illness. J Neurosci. 2019;39:8200–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tomassy GS, Berger DR, Chen HH, Kasthuri N, Hayworth KJ, Vercelli A, Seung HS, Lichtman JW, Arlotta P. Distinct profiles of myelin distribution alongside single axons of pyramidal neurons within the neocortex. Science. 2014;344:319–24.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shapson-Coe A, Januszewski M, Berger DR, Pope A, Wu Y, Blakely T, Schalek RL, Li PH, Wang S, Maitin-Shepard J, et al. A connectomic research of a petascale fragment of human cerebral cortex. BioRxiv. 2021.05.29.446289. https://www.biorxiv.org/content/10.1101/2021.05.29.446289v1.

  • Nathanson AJ, Davies PA, Moss SJ. Inhibitory synapse formation on the axon preliminary section. Front Mol Neurosci. 2019;12:266.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baalman Okay, Marin MA, Ho TS, Godoy M, Cherian L, Robertson C, Rasband MN. Axon preliminary segment-associated microglia. J Neurosci. 2015;35:2283–92.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Somogyi P, Hamori J. A quantitative electron microscopic research of the Purkinje cell axon preliminary section. Neuroscience. 1976;1:361–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu Y, Herman P, Rothman DL, Agarwal D, Hyder F. Evaluating the grey and white matter vitality budgets of human mind operate. J Cereb Blood Flow Metab. 2018;38:1339–53.

    Article 
    PubMed 

    Google Scholar
     

  • Rasband MN, Peles E. The nodes of ranvier: molecular meeting and upkeep. Cold Spring Harb Perspect Biol. 2015;8: a020495.

    Article 
    PubMed 

    Google Scholar
     

  • Zhang CL, Ho PL, Kintner DB, Sun D, Chiu SY. Activity-dependent regulation of mitochondrial motility by calcium and Na/Okay-ATPase at nodes of Ranvier of myelinated nerves. J Neurosci. 2010;30:3555–66.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Edgar JM, McCulloch MC, Thomson CE, Griffiths IR. Distribution of mitochondria alongside small-diameter myelinated central nervous system axons. J Neurosci Res. 2008;86:2250–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chiu SY. Matching mitochondria to metabolic wants at nodes of Ranvier. Neuroscientist. 2011;17:343–50.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ohno N, Kidd GJ, Mahad D, Kiryu-Seo S, Avishai A, Komuro H, Trapp BD. Myelination and axonal electrical exercise modulate the distribution and motility of mitochondria at CNS nodes of Ranvier. J Neurosci. 2011;31:7249–58.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Serwanski DR, Jukkola P, Nishiyama A. Heterogeneity of astrocyte and NG2 cell insertion on the node of ranvier. J Comp Neurol. 2017;525:535–52.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Niven JE. Neuronal vitality consumption: biophysics, effectivity and evolution. Curr Opin Neurobiol. 2016;41:129–35.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bordone MP, Salman MM, Titus HE, Amini E, Andersen JV, Chakraborti B, Diuba AV, Dubouskaya TG, Ehrke E, de Espindola Freitas A, et al. The energetic mind – A assessment from college students to college students. J Neurochem. 2019;151:139–65.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guedes-Dias P, Holzbaur ELF. Axonal transport: driving synaptic operate. Science. 2019;366:eaww9997.

    Article 

    Google Scholar
     

  • Maday S, Twelvetrees AE, Moughamian AJ, Holzbaur EL. Axonal transport: cargo-specific mechanisms of motility and regulation. Neuron. 2014;84:292–309.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hancock WO. Bidirectional cargo transport: shifting past tug of battle. Nat Rev Mol Cell Biol. 2014;15:615–28.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kasthuri N, Hayworth KJ, Berger DR, Schalek RL, Conchello JA, Knowles-Barley S, Lee D, Vazquez-Reina A, Kaynig V, Jones TR, et al. Saturated reconstruction of a quantity of neocortex. Cell. 2015;162:648–61.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fruhbeis C, Frohlich D, Kramer-Albers EM. Emerging roles of exosomes in neuron-glia communication. Front Physiol. 2012;3:119.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • D’Acunzo P, Perez-Gonzalez R, Kim Y, Hargash T, Miller C, Alldred MJ, Erdjument-Bromage H, Penikalapati SC, Pawlik M, Saito M, et al. Mitovesicles are a novel inhabitants of extracellular vesicles of mitochondrial origin altered in Down syndrome. Sci Adv. 2021;7:eabe5085.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hayakawa Okay, Esposito E, Wang X, Terasaki Y, Liu Y, Xing C, Ji X, Lo EH. Transfer of mitochondria from astrocytes to neurons after stroke. Nature. 2016;535:551–5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Davis CH, Kim KY, Bushong EA, Mills EA, Boassa D, Shih T, Kinebuchi M, Phan S, Zhou Y, Bihlmeyer NA, et al. Transcellular degradation of axonal mitochondria. Proc Natl Acad Sci U S A. 2014;111:9633–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stedehouder J, Brizee D, Slotman JA, Pascual-Garcia M, Leyrer ML, Bouwen BL, Dirven CM, Gao Z, Berson DM, Houtsmuller AB, Kushner SA. Local axonal morphology guides the topography of interneuron myelination in mouse and human neocortex. Elife. 2019;8:e48615.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Almeida RG, Williamson JM, Madden ME, Early JJ, Voas MG, Talbot WS, Bianco IH, Lyons DA. Myelination induces axonal hotspots of synaptic vesicle fusion that promote sheath progress. Curr Biol. 2021;31(3743–3754): e3745.


    Google Scholar
     

  • Rangaraju V, Calloway N, Ryan TA. Activity-driven native ATP synthesis is required for synaptic operate. Cell. 2014;156:825–35.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pulido C, Ryan TA. Synaptic vesicle swimming pools are a serious hidden resting metabolic burden of nerve terminals. Sci Adv. 2021;7:eabi9027.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Astrup J, Sorensen PM, Sorensen HR. Oxygen and glucose consumption associated to Na+-Okay+ transport in canine mind. Stroke. 1981;12:726–30.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hafner AS, Donlin-Asp PG, Leitch B, Herzog E, Schuman EM. Local protein synthesis is a ubiquitous function of neuronal pre- and postsynaptic compartments. Science. 2019;364:eaau3644.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jackson RJ, Hellen CU, Pestova TV. The mechanism of eukaryotic translation initiation and rules of its regulation. Nat Rev Mol Cell Biol. 2010;11:113–27.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Clare DK, Saibil HR. ATP-driven molecular chaperone machines. Biopolymers. 2013;99:846–59.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen JL, Nedivi E. Neuronal structural reworking: is all of it about entry? Curr Opin Neurobiol. 2010;20:557–62.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sankaranarayanan S, Atluri PP, Ryan TA. Actin has a molecular scaffolding, not propulsive, position in presynaptic operate. Nat Neurosci. 2003;6:127–35.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Colicos MA, Collins BE, Sailor MJ, Goda Y. Remodeling of synaptic actin induced by photoconductive stimulation. Cell. 2001;107:605–16.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qu X, Kumar A, Blockus H, Waites C, Bartolini F. Activity-dependent nucleation of dynamic microtubules at presynaptic boutons controls neurotransmission. Curr Biol. 2019;29(4231–4240): e4235.


    Google Scholar
     

  • Zhou B, Yu P, Lin MY, Sun T, Chen Y, Sheng ZH. Facilitation of axon regeneration by enhancing mitochondrial transport and rescuing vitality deficits. J Cell Biol. 2016;214:103–19.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moutaux E, Christaller W, Scaramuzzino C, Genoux A, Charlot B, Cazorla M, Saudou F. Neuronal community maturation in a different way impacts secretory vesicles and mitochondria transport in axons. Sci Rep. 2018;8:13429.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun T, Qiao H, Pan PY, Chen Y, Sheng ZH. Motile axonal mitochondria contribute to the variability of presynaptic energy. Cell Rep. 2013;4:413–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shepherd GM, Harris KM. Three-dimensional construction and composition of CA3–>CA1 axons in rat hippocampal slices: implications for presynaptic connectivity and compartmentalization. J Neurosci. 1998;18:8300–10.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chavan V, Willis J, Walker SK, Clark HR, Liu X, Fox MA, Srivastava S, Mukherjee Okay. Central presynaptic terminals are enriched in ATP however the majority lack mitochondria. PLoS ONE. 2015;10: e0125185.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dufour A, Rollenhagen A, Satzler Okay, Lubke JHR. Development of synaptic boutons in layer 4 of the barrel subject of the rat somatosensory cortex: a quantitative evaluation. Cereb Cortex. 2016;26:838–54.

    PubMed 

    Google Scholar
     

  • Lees RM, Johnson JD, Ashby MC. Presynaptic boutons that include mitochondria are extra steady. Front Synaptic Neurosci. 2019;11:37.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu Y, Uytiepo M, Bushong E, Haberl M, Beutter E, Scheiwe F, Zhang W, Chang L, Luu D, Chui B, et al. Nanoscale 3D EM reconstructions reveal intrinsic mechanisms of structural variety of chemical synapses. Cell Rep. 2021;35: 108953.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rodriguez-Moreno J, Rollenhagen A, Arlandis J, Santuy A, Merchan-Perez A, DeFelipe J, Lubke JHR, Clasca F. Quantitative 3D ultrastructure of thalamocortical synapses from the “lemniscal” ventral posteromedial nucleus in mouse barrel cortex. Cereb Cortex. 2018;28:3159–75.

    Article 
    PubMed 

    Google Scholar
     

  • Andres RH, Ducray AD, Schlattner U, Wallimann T, Widmer HR. Functions and results of creatine within the central nervous system. Brain Res Bull. 2008;76:329–43.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pathak D, Shields LY, Mendelsohn BA, Haddad D, Lin W, Gerencser AA, Kim H, Brand MD, Edwards RH, Nakamura Okay. The position of mitochondrially derived ATP in synaptic vesicle recycling. J Biol Chem. 2015;290:22325–36.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chamberlain KA, Sheng ZH. Mechanisms for the upkeep and regulation of axonal vitality provide. J Neurosci Res. 2019;97:897–913.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saxton WM, Hollenbeck PJ. The axonal transport of mitochondria. J Cell Sci. 2012;125:2095–104.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pekkurnaz G, Wang X. Mitochondrial heterogeneity and homeostasis by means of the lens of a neuron. Nat Metab. 2022;4:802.

    Article 
    PubMed 

    Google Scholar
     

  • Devine MJ, Kittler JT. Mitochondria on the neuronal presynapse in well being and illness. Nat Rev Neurosci. 2018;19:63–80.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Justs KA, Lu Z, Chouhan AK, Borycz JA, Lu Z, Meinertzhagen IA, Macleod GT. Presynaptic mitochondrial quantity and packing density scale with presynaptic energy demand. J Neurosci. 2022;42:954–67.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen Y, Sheng ZH. Kinesin-1-syntaphilin coupling mediates activity-dependent regulation of axonal mitochondrial transport. J Cell Biol. 2013;202:351–64.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen YM, Gerwin C, Sheng ZH. Dynein gentle chain LC8 regulates syntaphilin-mediated mitochondrial docking in axons. J Neurosci. 2009;29:9429–38.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li S, Xiong GJ, Huang N, Sheng ZH. The cross-talk of vitality sensing and mitochondrial anchoring sustains synaptic efficacy by sustaining presynaptic metabolism. Nat Metab. 2020;2:1077–95.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pekkurnaz G, Trinidad JC, Wang X, Kong D, Schwarz TL. Glucose regulates mitochondrial motility through Milton modification by O-GlcNAc transferase. Cell. 2014;158:54–68.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Basu H, Pekkurnaz G, Falk J, Wei W, Chin M, Steen J, Schwarz TL. FHL2 anchors mitochondria to actin and adapts mitochondrial dynamics to glucose provide. J Cell Biol. 2021;220:e201912077.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Smith HL, Bourne JN, Cao G, Chirillo MA, Ostroff LE, Watson DJ, Harris KM. Mitochondrial help of persistent presynaptic vesicle mobilization with age-dependent synaptic progress after LTP. Elife. 2016;5:e15275.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hara Y, Yuk F, Puri R, Janssen WG, Rapp PR, Morrison JH. Presynaptic mitochondrial morphology in monkey prefrontal cortex correlates with working reminiscence and is improved with estrogen remedy. Proc Natl Acad Sci U S A. 2014;111:486–91.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ferree AW, Trudeau Okay, Zik E, Benador IY, Twig G, Gottlieb RA, Shirihai OS. MitoTimer probe reveals the influence of autophagy, fusion, and motility on subcellular distribution of younger and previous mitochondrial protein and on relative mitochondrial protein age. Autophagy. 2013;9:1887–96.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baranov SV, Baranova OV, Yablonska S, Suofu Y, Vazquez AL, Kozai TDY, Cui XT, Ferrando LM, Larkin TM, Tyurina YY, et al. Mitochondria modulate programmed neuritic retraction. Proc Natl Acad Sci U S A. 2019;116:650–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brown MR, Sullivan PG, Geddes JW. Synaptic mitochondria are extra inclined to Ca2+overload than nonsynaptic mitochondria. J Biol Chem. 2006;281:11658–68.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hill RA, Li AM, Grutzendler J. Lifelong cortical myelin plasticity and age-related degeneration within the dwell mammalian mind. Nat Neurosci. 2018;21:683–95.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stauch KL, Purnell PR, Fox HS. Quantitative proteomics of synaptic and nonsynaptic mitochondria: insights for synaptic mitochondrial vulnerability. J Proteome Res. 2014;13:2620–36.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Volgyi Okay, Gulyassy P, Haden Okay, Kis V, Badics Okay, Kekesi KA, Simor A, Gyorffy B, Toth EA, Lubec G, et al. Synaptic mitochondria: a mind mitochondria cluster with a particular proteome. J Proteomics. 2015;120:142–57.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Graham LC, Eaton SL, Brunton PJ, Atrih A, Smith C, Lamont DJ, Gillingwater TH, Pennetta G, Skehel P, Wishart TM. Proteomic profiling of neuronal mitochondria reveals modulators of synaptic structure. Mol Neurodegener. 2017;12:77.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sobieski C, Fitzpatrick MJ, Mennerick SJ. Differential presynaptic ATP provide for basal and high-demand transmission. J Neurosci. 2017;37:1888–99.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lujan B, Kushmerick C, Banerjee TD, Dagda RK, Renden R. Glycolysis selectively shapes the presynaptic motion potential waveform. J Neurophysiol. 2016;116:2523–40.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jang S, Nelson JC, Bend EG, Rodriguez-Laureano L, Tueros FG, Cartagenova L, Underwood Okay, Jorgensen EM, Colon-Ramos DA. Glycolytic enzymes localize to synapses below vitality stress to help synaptic operate. Neuron. 2016;90:278–91.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hobson BD, Choi SJ, Mosharov EV, Soni RK, Sulzer D, Sims PA. Subcellular proteomics of dopamine neurons within the mouse mind. Elife. 2022;11:e70921.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Burre J, Volknandt W. The synaptic vesicle proteome. J Neurochem. 2007;101:1448–62.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Morciano M, Burre J, Corvey C, Karas M, Zimmermann H, Volknandt W. Immunoisolation of two synaptic vesicle swimming pools from synaptosomes: a proteomics evaluation. J Neurochem. 2005;95:1732–45.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ishida A, Noda Y, Ueda T. Synaptic vesicle-bound pyruvate kinase can help vesicular glutamate uptake. Neurochem Res. 2009;34:807–18.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ikemoto A, Bole DG, Ueda T. Glycolysis and glutamate accumulation into synaptic vesicles. Role of glyceraldehyde phosphate dehydrogenase and 3-phosphoglycerate kinase. J Biol Chem. 2003;278:5929–40.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ashrafi G, de Juan-Sanz J, Farrell RJ, Ryan TA. Molecular tuning of the axonal mitochondrial Ca(2+) uniporter ensures metabolic flexibility of neurotransmission. Neuron. 2020;105(678–687): e675.


    Google Scholar
     

  • Herrero-Mendez A, Almeida A, Fernandez E, Maestre C, Moncada S, Bolanos JP. The bioenergetic and antioxidant standing of neurons is managed by steady degradation of a key glycolytic enzyme by APC/C-Cdh1. Nat Cell Biol. 2009;11:747–52.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cruz E, Bessieres B, Magistretti P, Alberini CM. Differential position of neuronal glucose and PFKFB3 in reminiscence formation throughout improvement. Glia. 2022;70:2207.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rodriguez-Rodriguez P, Fernandez E, Almeida A, Bolanos JP. Excitotoxic stimulus stabilizes PFKFB3 inflicting pentose-phosphate pathway to glycolysis swap and neurodegeneration. Cell Death Differ. 2012;19:1582–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lopez-Fabuel I, Garcia-Macia M, Buondelmonte C, Burmistrova O, Bonora N, Alonso-Batan P, Morant-Ferrando B, Vicente-Gutierrez C, Jimenez-Blasco D, Quintana-Cabrera R, et al. Aberrant upregulation of the glycolytic enzyme PFKFB3 in CLN7 neuronal ceroid lipofuscinosis. Nat Commun. 2022;13:536.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Semyanov A, Verkhratsky A. Astrocytic processes: from tripartite synapses to the energetic milieu. Trends Neurosci. 2021;44:781–92.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Aten S, Kiyoshi CM, Arzola EP, Patterson JA, Taylor AT, Du Y, Guiher AM, Philip M, Camacho EG, Mediratta D, et al. Ultrastructural view of astrocyte arborization, astrocyte-astrocyte and astrocyte-synapse contacts, intracellular vesicle-like buildings, and mitochondrial community. Prog Neurobiol. 2022;213: 102264.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Belanger M, Allaman I, Magistretti PJ. Brain vitality metabolism: deal with astrocyte-neuron metabolic cooperation. Cell Metab. 2011;14:724–38.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Magistretti PJ, Allaman I. A mobile perspective on mind vitality metabolism and purposeful imaging. Neuron. 2015;86:883–901.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Machler P, Wyss MT, Elsayed M, Stobart J, Gutierrez R, von Faber-Castell A, Kaelin V, Zuend M, San Martin A, Romero-Gomez I,., et al. In vivo proof for a lactate gradient from astrocytes to neurons. Cell Metab. 2016;23:94–102.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dienel GA. Lack of applicable stoichiometry: Strong proof in opposition to an energetically essential astrocyte-neuron lactate shuttle in mind. J Neurosci Res. 2017;95:2103–25.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Diaz-Garcia CM, Mongeon R, Lahmann C, Koveal D, Zucker H, Yellen G. Neuronal stimulation triggers neuronal glycolysis and never lactate uptake. Cell Metab. 2017;26(361–374): e364.


    Google Scholar
     

  • Ivanov AI, Malkov AE, Waseem T, Mukhtarov M, Buldakova S, Gubkina O, Zilberter M, Zilberter Y. Glycolysis and oxidative phosphorylation in neurons and astrocytes throughout community exercise in hippocampal slices. J Cereb Blood Flow Metab. 2014;34:397–407.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Magistretti PJ, Allaman I. Lactate within the mind: from metabolic end-product to signalling molecule. Nat Rev Neurosci. 2018;19:235–49.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Barros LF, Ruminot I, Sotelo-Hitschfeld T, Lerchundi R, Fernandez-Moncada I. Metabolic recruitment in mind tissue. Annu Rev Physiol. 2022;85:115–135. https://doi.org/10.1146/annurev-physiol-021422-091035.

  • Ohno-Shosaku T, Tanimura A, Hashimotodani Y, Kano M. Endocannabinoids and retrograde modulation of synaptic transmission. Neuroscientist. 2012;18:119–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Benard G, Massa F, Puente N, Lourenco J, Bellocchio L, Soria-Gomez E, Matias I, Delamarre A, Metna-Laurent M, Cannich A, et al. Mitochondrial CB1 receptors regulate neuronal vitality metabolism. Nat Neurosci. 2012;15:558–64.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jimenez-Blasco D, Busquets-Garcia A, Hebert-Chatelain E, Serrat R, Vicente-Gutierrez C, Ioannidou C, Gomez-Sotres P, Lopez-Fabuel I, Resch-Beusher M, Resel E, et al. Glucose metabolism hyperlinks astroglial mitochondria to cannabinoid results. Nature. 2020;583:603–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Katsyuba E, Romani M, Hofer D, Auwerx J. NAD(+) homeostasis in well being and illness. Nat Metab. 2020;2:9–31.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jones DP, Sies H. The Redox code. Antioxid Redox Signal. 2015;23:734–46.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Verdin E. NAD(+) in growing old, metabolism, and neurodegeneration. Science. 2015;350:1208–13.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lautrup S, Sinclair DA, Mattson MP, Fang EF. NAD(+) in mind growing old and neurodegenerative problems. Cell Metab. 2019;30:630–55.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cambronne XA, Kraus WL. Location, location, location: compartmentalization of NAD(+) synthesis and features in mammalian cells. Trends Biochem Sci. 2020;45:858–73.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saunders A, Macosko EZ, Wysoker A, Goldman M, Krienen FM, de Rivera H, Bien E, Baum M, Bortolin L, Wang S, et al. Molecular variety and specializations among the many cells of the grownup mouse mind. Cell. 2018;174(1015–1030): e1016.


    Google Scholar
     

  • Sharma Okay, Schmitt S, Bergner CG, Tyanova S, Kannaiyan N, Manrique-Hoyos N, Kongi Okay, Cantuti L, Hanisch UK, Philips MA, et al. Cell type- and mind region-resolved mouse mind proteome. Nat Neurosci. 2015;18:1819–31.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang X, Zhang Q, Bao R, Zhang N, Wang Y, Polo-Parada L, Tarim A, Alemifar A, Han X, Wilkins HM, et al. Deletion of nampt in projection neurons of grownup mice results in motor dysfunction, neurodegeneration, and demise. Cell Rep. 2017;20:2184–200.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lundt S, Zhang N, Wang X, Polo-Parada L, Ding S. The impact of NAMPT deletion in projection neurons on the operate and construction of neuromuscular junction (NMJ) in mice. Sci Rep. 2020;10:99.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stein LR, Wozniak DF, Dearborn JT, Kubota S, Apte RS, Izumi Y, Zorumski CF, Imai S. Expression of Nampt in hippocampal and cortical excitatory neurons is vital for cognitive operate. J Neurosci. 2014;34:5800–15.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin JB, Kubota S, Ban N, Yoshida M, Santeford A, Sene A, Nakamura R, Zapata N, Kubota M, Tsubota Okay, et al. NAMPT-Mediated NAD(+) biosynthesis is important for imaginative and prescient in mice. Cell Rep. 2016;17:69–85.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang X, Zhang Z, Zhang N, Li H, Zhang L, Baines CP, Ding S. Subcellular NAMPT-mediated NAD(+) salvage pathways and their roles in bioenergetics and neuronal safety after ischemic harm. J Neurochem. 2019;151:732–48.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yoshida M, Satoh A, Lin JB, Mills KF, Sasaki Y, Rensing N, Wong M, Apte RS, Imai SI. Extracellular vesicle-contained eNAMPT delays growing old and extends lifespan in mice. Cell Metab. 2019;30(329–342): e325.


    Google Scholar
     

  • Lu YB, Chen CX, Huang J, Tian YX, Xie X, Yang P, Wu M, Tang C, Zhang WP. Nicotinamide phosphoribosyltransferase secreted from microglia through exosome throughout ischemic harm. J Neurochem. 2019;150:723–37.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Berger F, Lau C, Dahlmann M, Ziegler M. Subcellular compartmentation and differential catalytic properties of the three human nicotinamide mononucleotide adenylyltransferase isoforms. J Biol Chem. 2005;280:36334–41.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ali YO, Li-Kroeger D, Bellen HJ, Zhai RG, Lu HC. NMNATs, evolutionarily conserved neuronal upkeep components. Trends Neurosci. 2013;36:632–40.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yan T, Feng Y, Zheng J, Ge X, Zhang Y, Wu D, Zhao J, Zhai Q. Nmnat2 delays axon degeneration in superior cervical ganglia depending on its NAD synthesis exercise. Neurochem Int. 2010;56:101–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Milde S, Gilley J, Coleman MP. Subcellular localization determines the soundness and axon protecting capability of axon survival issue Nmnat2. PLoS Biol. 2013;11: e1001539.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mayer PR, Huang N, Dewey CM, Dries DR, Zhang H, Yu G. Expression, localization, and biochemical characterization of nicotinamide mononucleotide adenylyltransferase 2. J Biol Chem. 2010;285:40387–96.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hung CO, Coleman MP. KIF1A mediates axonal transport of BACE1 and identification of independently shifting cargoes in residing SCG neurons. Traffic. 2016;17:1155–67.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gilley J, Coleman MP. Endogenous Nmnat2 is an important survival issue for upkeep of wholesome axons. PLoS Biol. 2010;8: e1000300.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gilley J, Adalbert R, Yu G, Coleman MP. Rescue of peripheral and CNS axon defects in mice missing NMNAT2. J Neurosci. 2013;33:13410–24.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Niou Z-X, Yang S, Sri A, Rodriquez HC, Gilley J, Coleman MP, et al. NMNAT2 in cortical glutamatergic neurons exerts each cell and non-cell autonomous influences to form cortical improvement and to keep up neuronal well being. bioRxiv 2022.02.05.479195. https://www.biorxiv.org/content/10.1101/2022.02.05.479195v1.full.

  • Yang S, Niou Z-X, Enriquez A, LaMar J, Huang J-Y, Ling Okay, et al. NAD homeostasis maintained by NMNAT2 helps vesicular glycolysis and fuels quick axonal transport in distal axons of cortical glutamatergic neurons in mice. Biorxiv. 2022.02.06.479307. https://www.biorxiv.org/content/10.1101/2022.02.06.479307v2.

  • Coleman MP, Hoke A. Programmed axon degeneration: from mouse to mechanism to medication. Nat Rev Neurosci. 2020;21:183–96.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Russo A, Goel P, Brace EJ, Buser C, Dickman D, DiAntonio A. The E3 ligase highwire promotes synaptic transmission by focusing on the NAD-synthesizing enzyme dNmnat. EMBO Rep. 2019;20:e46975.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van Lier M, Smit-Rigter L, Krimpenfort R, Saiepour MH, Ruimschotel E, Kamphuis W, Heimel JA, Levelt CN. NMNAT proteins that restrict wallerian degeneration additionally regulate vital interval plasticity within the visible cortex. eNeuro. 2019;6:ENEURO.0277.

    PubMed 

    Google Scholar
     

  • Nishiyama A, Komitova M, Suzuki R, Zhu X. Polydendrocytes (NG2 cells): multifunctional cells with lineage plasticity. Nat Rev Neurosci. 2009;10:9–22.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang X, Liu Y, Hong X, Li X, Meshul CK, Moore C, Yang Y, Han Y, Li WG, Qi X, et al. NG2 glia-derived GABA launch tunes inhibitory synapses and contributes to stress-induced nervousness. Nat Commun. 2021;12:5740.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goncalves MB, Wu Y, Clarke E, Grist J, Hobbs C, Trigo D, Jack J, Corcoran JPT. Regulation of myelination by exosome related retinoic acid launch from NG2-positive cells. J Neurosci. 2019;39:3013–27.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Galindo R, Banks Greenberg M, Araki T, Sasaki Y, Mehta N, Milbrandt J, Holtzman DM. NMNAT3 is protecting in opposition to the consequences of neonatal cerebral hypoxia-ischemia. Ann Clin Transl Neurol. 2017;4:722–38.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bai B, Wang X, Li Y, Chen PC, Yu Okay, Dey KK, Yarbro JM, Han X, Lutz BM, Rao S, et al. deep multilayer mind proteomics identifies molecular networks in Alzheimer’s illness development. Neuron. 2020;105(975–991): e977.


    Google Scholar
     

  • Zhao Y, Jin J, Hu Q, Zhou HM, Yi J, Yu Z, Xu L, Wang X, Yang Y, Loscalzo J. Genetically encoded fluorescent sensors for intracellular NADH detection. Cell Metab. 2011;14:555–66.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee CF, Caudal A, Abell L, Nagana Gowda GA, Tian R. Targeting NAD(+) metabolism as interventions for mitochondrial illness. Sci Rep. 2019;9:3073.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang L, Zhang S, Maezawa I, Trushin S, Minhas P, Pinto M, Jin LW, Prasain Okay, Nguyen TDT, Yamazaki Y, et al. Modulation of mitochondrial complicated I exercise averts cognitive decline in a number of animal fashions of familial Alzheimer’s illness. EBioMedicine. 2019;42:532.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Urbanska Okay, Orzechowski A. Unappreciated position of LDHA and LDHB to manage apoptosis and autophagy in tumor cells. Int J Mol Sci. 2019;20:2085.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mc cluskey M. thesis: “Study of vesicular glycolysis in health and Huntington’s Disease” Université Grenoble Alpes [2020]. [GIN] Grenoble Institut des Neurosciences; 2021.


    Google Scholar
     

  • Kimelberg HK. The position of hypotheses in present analysis, illustrated by hypotheses on the doable position of astrocytes in vitality metabolism and cerebral blood movement: from Newton to now. J Cereb Blood Flow Metab. 2004;24:1235–9.

    Article 
    PubMed 

    Google Scholar
     

  • Pellerin L, Magistretti PJ. Glutamate uptake into astrocytes stimulates cardio glycolysis: a mechanism coupling neuronal exercise to glucose utilization. Proc Natl Acad Sci U S A. 1994;91:10625–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gaude E, Schmidt C, Gammage PA, Dugourd A, Blacker T, Chew SP, Saez-Rodriguez J, O’Neill JS, Szabadkai G, Minczuk M, Frezza C. NADH shuttling {couples} cytosolic reductive carboxylation of glutamine with glycolysis in cells with mitochondrial dysfunction. Mol Cell. 2018;69(581–593): e587.


    Google Scholar
     

  • Even A, Morelli G, Turchetto S, Shilian M, Bail RL, Laguesse S, Krusy N, Brisker A, Brandis A, Inbar S, et al. ATP-citrate lyase promotes axonal transport throughout species. Nat Commun. 2021;12:5878.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stein LR, Imai S. The dynamic regulation of NAD metabolism in mitochondria. Trends Endocrinol Metab. 2012;23:420–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pittelli M, Formentini L, Faraco G, Lapucci A, Rapizzi E, Cialdai F, Romano G, Moneti G, Moroni F, Chiarugi A. Inhibition of nicotinamide phosphoribosyltransferase: mobile bioenergetics reveals a mitochondrial insensitive NAD pool. J Biol Chem. 2010;285:34106–14.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cambronne XA, Stewart ML, Kim D, Jones-Brunette AM, Morgan RK, Farrens DL, Cohen MS, Goodman RH. Biosensor reveals a number of sources for mitochondrial NAD(+). Science. 2016;352:1474–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu Y, Liu J, Park J, Rai P, Zhai RG. Subcellular compartmentalization of NAD(+) and its position in most cancers: a sereNADe of metabolic melodies. Pharmacol Ther. 2019;200:27–41.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Magali V, Lena H, Jörn D, Ingvill T, Lars S, Marc N, Camila C-W, van den Barbara H, Øyvind S, Roland S, et al. Chronic depletion of subcellular NAD swimming pools reveals their interconnectivity and a buffering operate of mitochondria. Nature Portfolio; 2022.


    Google Scholar
     

  • Luongo TS, Eller JM, Lu MJ, Niere M, Raith F, Perry C, Bornstein MR, Oliphint P, Wang L, McReynolds MR, et al. SLC25A51 is a mammalian mitochondrial NAD(+) transporter. Nature. 2020;588:174–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kory N, UitBos J, van der Rijt S, Jankovic N, Gura M, Arp N, Pena IA, Prakash G, Chan SH, Kunchok T, et al. MCART1/SLC25A51 is required for mitochondrial NAD transport. Sci Adv. 2020;6:eabe5310.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Girardi E, Agrimi G, Goldmann U, Fiume G, Lindinger S, Sedlyarov V, Srndic I, Gurtl B, Agerer B, Kartnig F, et al. Epistasis-driven identification of SLC25A51 as a regulator of human mitochondrial NAD import. Nat Commun. 2020;11:6145.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang H, Yang T, Baur JA, Perez E, Matsui T, Carmona JJ, Lamming DW, Souza-Pinto NC, Bohr VA, Rosenzweig A, et al. Nutrient-sensitive mitochondrial NAD+ ranges dictate cell survival. Cell. 2007;130:1095–107.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang X, Kurnasov OV, Karthikeyan S, Grishin NV, Osterman AL, Zhang H. Structural characterization of a human cytosolic NMN/NaMN adenylyltransferase and implication in human NAD biosynthesis. J Biol Chem. 2003;278:13503–11.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Houtkooper RH, Pirinen E, Auwerx J. Sirtuins as regulators of metabolism and healthspan. Nat Rev Mol Cell Biol. 2012;13:225–38.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Anderson KA, Madsen AS, Olsen CA, Hirschey MD. Metabolic management by sirtuins and different enzymes that sense NAD(+), NADH, or their ratio. Biochim Biophys Acta Bioenerg. 2017;1858:991–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cohen MS. Interplay between compartmentalized NAD(+) synthesis and consumption: a deal with the PARP household. Genes Dev. 2020;34:254–62.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Verdin E, Hirschey MD, Finley LW, Haigis MC. Sirtuin regulation of mitochondria: vitality manufacturing, apoptosis, and signaling. Trends Biochem Sci. 2010;35:669–75.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ji Z, Liu GH, Qu J. Mitochondrial sirtuins, metabolism, and growing old. J Genet Genomics. 2021;49:287.

    Article 
    PubMed 

    Google Scholar
     

  • Chamberlain KA, Huang N, Xie Y, LiCausi F, Li S, Li Y, Sheng ZH. Oligodendrocytes improve axonal vitality metabolism by deacetylation of mitochondrial proteins by means of transcellular supply of SIRT2. Neuron. 2021;109(3456–3472): e3458.


    Google Scholar
     

  • Kim DS, Challa S, Jones A, Kraus WL. PARPs and ADP-ribosylation in RNA biology: from RNA expression and processing to protein translation and proteostasis. Genes Dev. 2020;34:302–20.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Figley MD, Gu W, Nanson JD, Shi Y, Sasaki Y, Cunnea Okay, Malde AK, Jia X, Luo Z, Saikot FK, et al. SARM1 is a metabolic sensor activated by an elevated NMN/NAD(+) ratio to set off axon degeneration. Neuron. 2021;109(1118–1136): e1111.


    Google Scholar
     

  • Angeletti C, Amici A, Gilley J, Loreto A, Trapanotto AG, Antoniou C, Merlini E, Coleman MP, Orsomando G. SARM1 is a multi-functional NAD (P) ase with distinguished base trade exercise, all regulated bymultiple physiologically related NAD metabolites. iScience. 2022;25:103812.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Krauss R, Bosanac T, Devraj R, Engber T, Hughes RO. Axons matter: the promise of treating neurodegenerative problems by focusing on SARM1-mediated axonal degeneration. Trends Pharmacol Sci. 2020;41:281–93.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sambashivan S, Freeman MR. SARM1 signaling mechanisms within the injured nervous system. Curr Opin Neurobiol. 2021;69:247–55.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Love NR, Pollak N, Dolle C, Niere M, Chen Y, Oliveri P, Amaya E, Patel S, Ziegler M. NAD kinase controls animal NADP biosynthesis and is modulated through evolutionarily divergent calmodulin-dependent mechanisms. Proc Natl Acad Sci U S A. 2015;112:1386–91.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang Y, Liu T, Lee CH, Chang Q, Yang J, Zhang Z. The NAD(+)-mediated self-inhibition mechanism of pro-neurodegenerative SARM1. Nature. 2020;588:658–63.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Desbois M, Crawley O, Evans PR, Baker ST, Masuho I, Yasuda R, Grill B. PAM kinds an atypical SCF ubiquitin ligase complicated that ubiquitinates and degrades NMNAT2. J Biol Chem. 2018;293:13897–909.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Walker LJ, Summers DW, Sasaki Y, Brace EJ, Milbrandt J, DiAntonio A. MAPK signaling promotes axonal degeneration by dashing the turnover of the axonal upkeep issue NMNAT2. Elife. 2017;6:22540.

    Article 

    Google Scholar
     

  • Summers DW, Frey E, Walker LJ, Milbrandt J, DiAntonio A. DLK activation synergizes with mitochondrial dysfunction to downregulate axon survival components and promote SARM1-dependent axon degeneration. Mol Neurobiol. 2020;57:1146–58.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Loreto A, Hill CS, Hewitt VL, Orsomando G, Angeletti C, Gilley J, Lucci C, Sanchez-Martinez A, Whitworth AJ, Conforti L, et al. Mitochondrial impairment prompts the Wallerian pathway by means of depletion of NMNAT2 resulting in SARM1-dependent axon degeneration. Neurobiol Dis. 2020;134: 104678.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gerdts J, Brace EJ, Sasaki Y, DiAntonio A, Milbrandt J. SARM1 activation triggers axon degeneration regionally through NAD(+) destruction. Science. 2015;348:453–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang J, Wu Z, Renier N, Simon DJ, Uryu Okay, Park DS, Greer PA, Tournier C, Davis RJ, Tessier-Lavigne M. Pathological axonal demise by means of a MAPK cascade that triggers an area vitality deficit. Cell. 2015;160:161–76.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Agledal L, Niere M, Ziegler M. The phosphate makes a distinction: mobile features of NADP. Redox Rep. 2010;15:2–10.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dillman AA, Majounie E, Ding J, Gibbs JR, Hernandez D, Arepalli S, Traynor BJ, Singleton AB, Galter D, Cookson MR. Transcriptomic profiling of the human mind reveals that altered synaptic gene expression is related to chronological growing old. Sci Rep. 2017;7:16890.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tzioras M, McGeachan RI, Durrant CS, Spires-Jones TL. Synaptic degeneration in Alzheimer illness. Nat Rev Neurol. 2022;19:19.

    Article 
    PubMed 

    Google Scholar
     

  • Wishart TM, Parson SH, Gillingwater TH. Synaptic vulnerability in neurodegenerative illness. J Neuropathol Exp Neurol. 2006;65:733–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • de Wilde MC, Overk CR, Sijben JW, Masliah E. Meta-analysis of synaptic pathology in Alzheimer’s illness reveals selective molecular vesicular equipment vulnerability. Alzheimers Dement. 2016;12:633–44.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stahon KE, Bastian C, Griffith S, Kidd GJ, Brunet S, Baltan S. Age-related modifications in axonal and mitochondrial ultrastructure and performance in white matter. J Neurosci. 2016;36:9990–10001.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morsci NS, Hall DH, Driscoll M, Sheng ZH. Age-related phasic patterns of mitochondrial upkeep in grownup caenorhabditis elegans neurons. J Neurosci. 2016;36:1373–85.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lomidze N, Zhvania MG, Tizabi Y, Japaridze N, Pochkhidze N, Rzayev F, Lordkipanidze T. Aging impacts cognition and hippocampal ultrastructure in male Wistar rats. Dev Neurobiol. 2021;81:833–46.

    Article 
    PubMed 

    Google Scholar
     

  • Lores-Arnaiz S, Bustamante J. Age-related alterations in mitochondrial physiological parameters and nitric oxide manufacturing in synaptic and non-synaptic mind cortex mitochondria. Neuroscience. 2011;188:117–24.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lores-Arnaiz S, Lombardi P, Karadayian AG, Orgambide F, Cicerchia D, Bustamante J. Brain cortex mitochondrial bioenergetics in synaptosomes and non-synaptic mitochondria throughout growing old. Neurochem Res. 2016;41:353–63.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Olesen MA, Torres AK, Jara C, Murphy MP, Tapia-Rojas C. Premature synaptic mitochondrial dysfunction within the hippocampus throughout growing old contributes to reminiscence loss. Redox Biol. 2020;34: 101558.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lomidze N, Zhvania MG, Tizabi Y, Japaridze N, Pochkhidze N, Rzayev F, Gasimov E. Age-related behavioral and ultrastructural modifications within the rat amygdala. Dev Neurobiol. 2020;80:433–42.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yao J, Brinton RD. Estrogen regulation of mitochondrial bioenergetics: implications for prevention of Alzheimer’s illness. Adv Pharmacol. 2012;64:327–71.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gaignard P, Liere P, Therond P, Schumacher M, Slama A, Guennoun R. Role of intercourse hormones on mind mitochondrial operate, with particular reference to growing old and neurodegenerative ailments. Front Aging Neurosci. 2017;9:406.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Torrens-Mas M, Pons DG, Sastre-Serra J, Oliver J, Roca P. Sexual hormones regulate the redox standing and mitochondrial operate within the mind Pathological implications. Redox Biol. 2020;31: 101505.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stauch KL, Purnell PR, Fox HS. Aging synaptic mitochondria exhibit dynamic proteomic modifications whereas sustaining bioenergetic operate. Aging (Albany NY). 2014;6:320–34.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pickett EK, Rose J, McCrory C, McKenzie CA, King D, Smith C, Gillingwater TH, Henstridge CM, Spires-Jones TL. Region-specific depletion of synaptic mitochondria within the brains of sufferers with Alzheimer’s illness. Acta Neuropathol. 2018;136:747–57.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hesse R, Hurtado ML, Jackson RJ, Eaton SL, Herrmann AG, Colom-Cadena M, Tzioras M, King D, Rose J, Tulloch J, et al. Comparative profiling of the synaptic proteome from Alzheimer’s illness sufferers with deal with the APOE genotype. Acta Neuropathol Commun. 2019;7:214.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carlyle BC, Kandigian SE, Kreuzer J, Das S, Trombetta BA, Kuo Y, Bennett DA, Schneider JA, Petyuk VA, Kitchen RR, et al. Synaptic proteins related to cognitive efficiency and neuropathology in older people revealed by multiplexed fractionated proteomics. Neurobiol Aging. 2021;105:99–114.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Du H, Guo L, Yan S, Sosunov AA, McKhann GM, Yan SS. Early deficits in synaptic mitochondria in an Alzheimer’s illness mouse mannequin. Proc Natl Acad Sci U S A. 2010;107:18670–5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Espino de la Fuente Munoz C, Rosas-Lemus M, Moreno-Castilla P, Bermudez-Rattoni F, Uribe-Carvajal S, Arias C. Age-dependent decline in synaptic mitochondrial operate is exacerbated in weak mind areas of feminine 3xTg-AD mice. Int J Mol Sci. 2020;21:8727.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ahmad F, Liu P. Synaptosome as a instrument in Alzheimer’s illness analysis. Brain Res. 2020;1746: 147009.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Seo NY, Kim GH, Noh JE, Shin JW, Lee CH, Lee KJ. Selective regional lack of cortical synapses missing presynaptic mitochondria within the 5xFAD mouse mannequin. Front Neuroanat. 2021;15: 690168.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reeve AK, Grady JP, Cosgrave EM, Bennison E, Chen C, Hepplewhite PD, Morris CM. Mitochondrial dysfunction throughout the synapses of substantia nigra neurons in Parkinson’s illness. NPJ Parkinsons Dis. 2018;4:9.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Plum S, Eggers B, Helling S, Stepath M, Theiss C, Leite REP, Molina M, Grinberg LT, Riederer P, Gerlach M, et al. Proteomic characterization of synaptosomes from human substantia Nigra signifies altered mitochondrial translation in parkinson’s illness. Cells. 2020;9:2580.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Prieto GA, Cotman CW. Early bioenergetic and autophagy impairments on the Parkinson’s illness synapse. Brain. 2022;145:1877–9.

    Article 
    PubMed 

    Google Scholar
     

  • Szego EM, Dominguez-Meijide A, Gerhardt E, Konig A, Koss DJ, Li W, Pinho R, Fahlbusch C, Johnson M, Santos P, et al. Cytosolic trapping of a mitochondrial warmth shock protein is an early pathological occasion in synucleinopathies. Cell Rep. 2019;28(65–77): e66.


    Google Scholar
     

  • Yano H, Baranov SV, Baranova OV, Kim J, Pan Y, Yablonska S, Carlisle DL, Ferrante RJ, Kim AH, Friedlander RM. Inhibition of mitochondrial protein import by mutant huntingtin. Nat Neurosci. 2014;17:822–31.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Polyzos AA, Lee DY, Datta R, Hauser M, Budworth H, Holt A, Mihalik S, Goldschmidt P, Frankel Okay, Trego Okay, et al. Metabolic reprogramming in astrocytes distinguishes region-specific neuronal susceptibility in huntington mice. Cell Metab. 2019;29(1258–1273): e1211.


    Google Scholar
     

  • Ravera S, Bonifacino T, Bartolucci M, Milanese M, Gallia E, Provenzano F, Cortese Okay, Panfoli I, Bonanno G. Characterization of the mitochondrial cardio metabolism within the pre- and perisynaptic Districts of the SOD1(G93A) mouse mannequin of amyotrophic lateral sclerosis. Mol Neurobiol. 2018;55:9220–33.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ravera S, Torazza C, Bonifacino T, Provenzano F, Rebosio C, Milanese M, Usai C, Panfoli I, Bonanno G. Altered glucose catabolism within the presynaptic and perisynaptic compartments of SOD1(G93A) mouse spinal twine and motor cortex signifies that mitochondria are the location of bioenergetic imbalance in ALS. J Neurochem. 2019;151:336–50.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Herrup Okay. The case for rejecting the amyloid cascade speculation. Nat Neurosci. 2015;18:794–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rozycka A, Liguz-Lecznar M. The house the place growing old acts: deal with the GABAergic synapse. Aging Cell. 2017;16:634–43.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lockwood CT, Duffy CJ. Hyperexcitability in growing old is misplaced in Alzheimer’s: what’s all the thrill about? Cereb Cortex. 2020;30:5874–84.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stargardt A, Swaab DF, Bossers Okay. Storm earlier than the quiet: neuronal hyperactivity and Abeta within the presymptomatic levels of Alzheimer’s illness. Neurobiol Aging. 2015;36:1–11.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Busche MA, Konnerth A. Neuronal hyperactivity–a key defect in Alzheimer’s illness? BioEssays. 2015;37:624–32.

    Article 
    PubMed 

    Google Scholar
     

  • Targa Dias Anastacio H, Matosin N, Ooi L. Neuronal hyperexcitability in Alzheimer’s illness: what are the drivers behind this aberrant phenotype? Transl Psychiatry. 2022;12:257.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koelewijn L, Lancaster TM, Linden D, Dima DC, Routley BC, Magazzini L, Barawi Okay, Brindley L, Adams R, Tansey KE, et al. Oscillatory hyperactivity and hyperconnectivity in younger APOE-varepsilon4 carriers and hypoconnectivity in Alzheimer’s illness. Elife. 2019;8:e36011.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van Nifterick AM, Gouw AA, van Kesteren RE, Scheltens P, Stam CJ, de Haan W. A multiscale mind community mannequin hyperlinks Alzheimer’s disease-mediated neuronal hyperactivity to large-scale oscillatory slowing. Alzheimers Res Ther. 2022;14:101.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dauwels J, Srinivasan Okay, Ramasubba Reddy M, Musha T, Vialatte FB, Latchoumane C, Jeong J, Cichocki A. Slowing and lack of complexity in Alzheimer’s EEG: two sides of the identical coin? Int J Alzheimers Dis. 2011;2011: 539621.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu C, Han T, Xu Z, Liu J, Zhang M, Du J, Zhou Q, Duan Y, Li Y, Wang J, et al. Modulating gamma oscillations promotes mind connectivity to enhance cognitive impairment. Cereb Cortex. 2022;32:2644–56.

    Article 
    PubMed 

    Google Scholar
     

  • Gruntz Okay, Bloechliger M, Becker C, Jick SS, Fuhr P, Meier CR, Ruegg S. Parkinson illness and the danger of epileptic seizures. Ann Neurol. 2018;83:363–74.

    Article 
    PubMed 

    Google Scholar
     

  • Bishop MW, Chakraborty S, Matthews GA, Dougalis A, Wood NW, Festenstein R, Ungless MA. Hyperexcitable substantia nigra dopamine neurons in PINK1- and HtrA2/Omi-deficient mice. J Neurophysiol. 2010;104:3009–20.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cepeda C, Oikonomou KD, Cummings D, Barry J, Yazon VW, Chen DT, Asai J, Williams CK, Vinters HV. Developmental origins of cortical hyperexcitability in Huntington’s illness: assessment and new observations. J Neurosci Res. 2019;97:1624–35.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Higashihara M, Pavey N, van den Bos M, Menon P, Kiernan MC, Vucic S. Association of cortical hyperexcitability and cognitive impairment in sufferers with amyotrophic lateral sclerosis. Neurology. 2021;96:e2090–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hernandez DE, Salvadores NA, Moya-Alvarado G, Catalan RJ, Bronfman FC, Court FA. Axonal degeneration induced by glutamate excitotoxicity is mediated by necroptosis. J Cell Sci. 2018;131:jcs214684.

    Article 
    PubMed 

    Google Scholar
     

  • Ko KW, Milbrandt J, DiAntonio A. SARM1 acts downstream of neuroinflammatory and necroptotic signaling to induce axon degeneration. J Cell Biol. 2020;219:e201912047.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu XH, Lu M, Lee BY, Ugurbil Okay, Chen W. In vivo NAD assay reveals the intracellular NAD contents and redox state in wholesome human mind and their age dependences. Proc Natl Acad Sci U S A. 2015;112:2876–81.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Braidy N, Poljak A, Grant R, Jayasena T, Mansour H, Chan-Ling T, Guillemin GJ, Smythe G, Sachdev P. Mapping NAD(+) metabolism within the mind of ageing Wistar rats: potential targets for influencing mind senescence. Biogerontology. 2014;15:177–98.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheng A, Yang Y, Zhou Y, Maharana C, Lu D, Peng W, Liu Y, Wan R, Marosi Okay, Misiak M, et al. Mitochondrial SIRT3 mediates adaptive responses of neurons to train and metabolic and excitatory challenges. Cell Metab. 2016;23:128–42.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheng A, Wang J, Ghena N, Zhao Q, Perone I, King TM, Veech RL, Gorospe M, Wan R, Mattson MP. SIRT3 haploinsufficiency aggravates lack of GABAergic interneurons and neuronal community hyperexcitability in an Alzheimer’s illness mannequin. J Neurosci. 2020;40:694–709.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Noori A, Mezlini AM, Hyman BT, Serrano-Pozo A, Das S. Systematic assessment and meta-analysis of human transcriptomics reveals neuroinflammation, poor vitality metabolism, and proteostasis failure throughout neurodegeneration. Neurobiol Dis. 2021;149: 105225.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bennett JP, Keeney PM. RNA-sequencing reveals similarities and variations in gene expression in weak mind tissues of Alzheimer’s and parkinson’s ailments. J Alzheimers Dis Rep. 2018;2:129–37.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Patel H, Dobson RJB, Newhouse SJ. A meta-analysis of Alzheimer’s illness mind transcriptomic knowledge. J Alzheimers Dis. 2019;68:1635–56.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ali YO, Allen HM, Yu L, Li-Kroeger D, Bakhshizadehmahmoudi D, Hatcher A, McCabe C, Xu J, Bjorklund N, Taglialatela G, et al. NMNAT2:HSP90 complicated mediates proteostasis in proteinopathies. PLoS Biol. 2016;14: e1002472.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang Y. Identifying neuron subtype-specific metabolic community modifications in single cell transcriptomics of Alzheimer’s Disease utilizing perturb-Met. BioRxiv. 2021.01.18.427154. https://www.biorxiv.org/content/10.1101/2021.01.18.427154v1.full.

  • Ghosh D, LeVault KR, Barnett AJ, Brewer GJ. A reversible early oxidized redox state that precedes macromolecular ROS harm in growing old nontransgenic and 3xTg-AD mouse neurons. J Neurosci. 2012;32:5821–32.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van der Velpen V, Rosenberg N, Maillard V, Teav T, Chatton JY, Gallart-Ayala H, Ivanisevic J. Sex-specific alterations in NAD+ metabolism in 3xTg Alzheimer’s illness mouse mind assessed by quantitative focused LC-MS. J Neurochem. 2021;159:378–88.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dong Y, Digman MA, Brewer GJ. Age- and AD-related redox state of NADH in subcellular compartments by fluorescence lifetime imaging microscopy. Geroscience. 2019;41:51–67.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hammond TC, Xing X, Yanckello LM, Stromberg A, Chang YH, Nelson PT, Lin AL. Human grey and white matter metabolomics to distinguish APOE and stage dependent modifications in Alzheimer’s illness. J Cell Immunol. 2021;3:397–412.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hikosaka Okay, Yaku Okay, Okabe Okay, Nakagawa T. Implications of NAD metabolism in pathophysiology and therapeutics for neurodegenerative ailments. Nutr Neurosci. 2021;24:371–83.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang X, He HJ, Xiong X, Zhou S, Wang WW, Feng L, Han R, Xie CL. NAD+ in Alzheimer’s illness: molecular mechanisms and systematic therapeutic proof obtained in vivo. Front Cell Dev Biol. 2021;9: 668491.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheng XS, Shi FX, Zhao KP, Lin W, Li XY, Zhang J, Bu YY, Zhu R, Li XH, Duan DX, et al. Nmnat2 attenuates amyloidogenesis and up-regulates ADAM10 in AMPK activity-dependent method. Aging (Albany NY). 2021;13:23620–36.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Conforti L, Gilley J, Coleman MP. Wallerian degeneration: an rising axon demise pathway linking harm and illness. Nat Rev Neurosci. 2014;15:394–409.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Henninger N, Bouley J, Sikoglu EM, An J, Moore CM, King JA, Bowser R, Freeman MR, Brown RH Jr. Attenuated traumatic axonal harm and improved purposeful end result after traumatic mind harm in mice missing Sarm1. Brain. 2016;139:1094–105.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marion CM, McDaniel DP, Armstrong RC. Sarm1 deletion reduces axon harm, demyelination, and white matter atrophy after experimental traumatic mind harm. Exp Neurol. 2019;321: 113040.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bradshaw DV Jr, Knutsen AK, Korotcov A, Sullivan GM, Radomski KL, Dardzinski BJ, Zi X, McDaniel DP, Armstrong RC. Genetic inactivation of SARM1 axon degeneration pathway improves end result trajectory after experimental traumatic mind harm primarily based on pathological, radiological, and purposeful measures. Acta Neuropathol Commun. 2021;9:89.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ozaki E, Gibbons L, Neto NG, Kenna P, Carty M, Humphries M, Humphries P, Campbell M, Monaghan M, Bowie A, Doyle SL. SARM1 deficiency promotes rod and cone photoreceptor cell survival in a mannequin of retinal degeneration. Life Sci Alliance. 2020;3:e201900618.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Finnegan LK, Chadderton N, Kenna PF, Palfi A, Carty M, Bowie AG, Millington-Ward S, Farrar GJ. SARM1 ablation is protecting and preserves spatial imaginative and prescient in an in vivo mouse mannequin of retinal ganglion cell degeneration. Int J Mol Sci. 2022;23:1606.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peters OM, Weiss A, Metterville J, Song L, Logan R, Smith GA, Schwarzschild MA, Mueller C, Brown RH, Freeman M. Genetic variety of axon degenerative mechanisms in fashions of Parkinson’s illness. Neurobiol Dis. 2021;155: 105368.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peters OM, Lewis EA, Osterloh JM, Weiss A, Salameh JS, Metterville J, Brown RH, Freeman MR. Loss of Sarm1 doesn’t suppress motor neuron degeneration within the SOD1G93A mouse mannequin of amyotrophic lateral sclerosis. Hum Mol Genet. 2018;27:3761–71.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Collins JM, Atkinson RAK, Matthews LM, Murray IC, Perry SE, King AE. Sarm1 knockout modifies biomarkers of neurodegeneration and spinal twine circuitry however not illness development within the mSOD1(G93A) mouse mannequin of ALS. Neurobiol Dis. 2022;172: 105821.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fu H, Hardy J, Duff KE. Selective vulnerability in neurodegenerative ailments. Nat Neurosci. 2018;21:1350–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Markus NM, Hasel P, Qiu J, Bell KF, Heron S, Kind PC, Dando O, Simpson TI, Hardingham GE. Expression of mRNA encoding Mcu and different mitochondrial calcium regulatory genes relies on cell kind, neuronal subtype, and Ca2+ signaling. PLoS ONE. 2016;11: e0148164.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grabert Okay, Michoel T, Karavolos MH, Clohisey S, Baillie JK, Stevens MP, Freeman TC, Summers KM, McColl BW. Microglial mind region-dependent variety and selective regional sensitivities to growing old. Nat Neurosci. 2016;19:504–16.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Soreq L, Consortium UKBE, North American Brain Expression C, Rose J, Soreq E, Hardy J, Trabzuni D, Cookson MR, Smith C, Ryten M, et al. Major shifts in glial regional identification are a transcriptional hallmark of human mind growing old. Cell Rep. 2017;18:557–70.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boisvert MM, Erikson GA, Shokhirev MN, Allen NJ. The growing old astrocyte transcriptome from a number of areas of the mouse mind. Cell Rep. 2018;22:269–85.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Clarke LE, Liddelow SA, Chakraborty C, Munch AE, Heiman M, Barres BA. Normal growing old induces A1-like astrocyte reactivity. Proc Natl Acad Sci U S A. 2018;115:E1896–905.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nasrabady SE, Rizvi B, Goldman JE, Brickman AM. White matter modifications in Alzheimer’s illness: a deal with myelin and oligodendrocytes. Acta Neuropathol Commun. 2018;6:22.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mot AI, Depp C, Nave KA. An rising position of dysfunctional axon-oligodendrocyte coupling in neurodegenerative ailments. Dialogues Clin Neurosci. 2018;20:283–92.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Butt AM, De La Rocha IC, Rivera A. Oligodendroglial cells in Alzheimer’s illness. Adv Exp Med Biol. 2019;1175:325–33.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kang SH, Li Y, Fukaya M, Lorenzini I, Cleveland DW, Ostrow LW, Rothstein JD, Bergles DE. Degeneration and impaired regeneration of grey matter oligodendrocytes in amyotrophic lateral sclerosis. Nat Neurosci. 2013;16:571–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lau SF, Cao H, Fu AKY, Ip NY. Single-nucleus transcriptome evaluation reveals dysregulation of angiogenic endothelial cells and neuroprotective glia in Alzheimer’s illness. Proc Natl Acad Sci U S A. 2020;117:25800–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marques S, Zeisel A, Codeluppi S, van Bruggen D, Mendanha Falcao A, Xiao L, Li H, Haring M, Hochgerner H, Romanov RA, et al. Oligodendrocyte heterogeneity within the mouse juvenile and grownup central nervous system. Science. 2016;352:1326–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sadick JS, O’Dea MR, Hasel P, Dykstra T, Faustin A, Liddelow SA. Astrocytes and oligodendrocytes bear subtype-specific transcriptional modifications in Alzheimer’s illness. Neuron. 2022;110(1788–1805): e1710.


    Google Scholar
     

  • Xu J, Chen S, Ahmed SH, Chen H, Ku G, Goldberg MP, Hsu CY. Amyloid-beta peptides are cytotoxic to oligodendrocytes. J Neurosci. 2001;21:RC118.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Uemura N, Uemura MT, Lo A, Bassil F, Zhang B, Luk KC, Lee VM, Takahashi R, Trojanowski JQ. Slow progressive accumulation of oligodendroglial Alpha-Synuclein (alpha-Syn) pathology in artificial alpha-syn fibril-induced mouse fashions of synucleinopathy. J Neuropathol Exp Neurol. 2019;78:877–90.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Azevedo C, Teku G, Pomeshchik Y, Reyes JF, Chumarina M, Russ Okay, Savchenko E, Hammarberg A, Lamas NJ, Collin A, et al. Parkinson’s illness and a number of system atrophy affected person iPSC-derived oligodendrocytes exhibit alpha-synuclein-induced modifications in maturation and immune reactive properties. Proc Natl Acad Sci U S A. 2022;119: e2111405119.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Smajic S, Prada-Medina CA, Landoulsi Z, Ghelfi J, Delcambre S, Dietrich C, Jarazo J, Henck J, Balachandran S, Pachchek S, et al. Single-cell sequencing of human midbrain reveals glial activation and a Parkinson-specific neuronal state. Brain. 2022;145:964–78.

    Article 
    PubMed 

    Google Scholar
     

  • Jeffries MA, McLane LE, Khandker L, Mather ML, Evangelou AV, Kantak D, Bourne JN, Macklin WB, Wood TL. mTOR signaling regulates metabolic operate in oligodendrocyte precursor cells and promotes environment friendly mind remyelination within the cuprizone mannequin. J Neurosci. 2021;41:8321–37.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Backes H, Walberer M, Ladwig A, Rueger MA, Neumaier B, Endepols H, Hoehn M, Fink GR, Schroeter M, Graf R. Glucose consumption of inflammatory cells masks metabolic deficits within the mind. Neuroimage. 2016;128:54–62.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen Z, Yuan Z, Yang S, Zhu Y, Xue M, Zhang J, Leng L. Brain vitality metabolism: astrocytes in neurodegenerative ailments. CNS Neurosci Ther. 2022;29:24.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Andersen JV, Schousboe A, Verkhratsky A. Astrocyte vitality and neurotransmitter metabolism in Alzheimer’s illness: Integration of the glutamate/GABA-glutamine cycle. Prog Neurobiol. 2022;217: 102331.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mulica P, Grunewald A, Pereira SL. Astrocyte-neuron metabolic crosstalk in neurodegeneration: a mitochondrial perspective. Front Endocrinol (Lausanne). 2021;12: 668517.

    Article 
    PubMed 

    Google Scholar
     

  • Bantle CM, Hirst WD, Weihofen A, Shlevkov E. Mitochondrial dysfunction in astrocytes: a task in parkinson’s illness? Front Cell Dev Biol. 2020;8: 608026.

    Article 
    PubMed 

    Google Scholar
     

  • Allen SP, Hall B, Woof R, Francis L, Gatto N, Shaw AC, Myszczynska M, Hemingway J, Coldicott I, Willcock A, et al. C9orf72 enlargement inside astrocytes reduces metabolic flexibility in amyotrophic lateral sclerosis. Brain. 2019;142:3771–90.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khakh BS, Beaumont V, Cachope R, Munoz-Sanjuan I, Goldman SA, Grantyn R. Unravelling and exploiting astrocyte dysfunction in Huntington’s illness. Trends Neurosci. 2017;40:422–37.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oberheim Bush NA, Nedergaard M. Do evolutionary modifications in astrocytes contribute to the computational energy of the hominid mind? Neurochem Res. 2017;42:2577–87.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li J, Pan L, Pembroke WG, Rexach JE, Godoy MI, Condro MC, Alvarado AG, Harteni M, Chen YW, Stiles L, et al. Conservation and divergence of vulnerability and responses to stressors between human and mouse astrocytes. Nat Commun. 2021;12:3958.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Johnson ECB, Dammer EB, Duong DM, Ping L, Zhou M, Yin L, Higginbotham LA, Guajardo A, White B, Troncoso JC, et al. Large-scale proteomic evaluation of Alzheimer’s illness mind and cerebrospinal fluid reveals early modifications in vitality metabolism related to microglia and astrocyte activation. Nat Med. 2020;26:769–80.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou Y, Song WM, Andhey PS, Swain A, Levy T, Miller KR, Poliani PL, Cominelli M, Grover S, Gilfillan S, et al. Human and mouse single-nucleus transcriptomics reveal TREM2-dependent and TREM2-independent mobile responses in Alzheimer’s illness. Nat Med. 2020;26:131–42.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu B, Park J-M, Coffey S, Hsu I-U, Lam TT, Gopal PP, et al. Single-cell transcriptomic and proteomic evaluation of Parkinson’s illness Brains. BioRxiv. 2022.02.14.480397. https://www.biorxiv.org/content/10.1101/2022.02.14.480397v1.

  • - Advertisement -
    Pet News 2Day
    Pet News 2Dayhttps://petnews2day.com
    About the editor Hey there! I'm proud to be the editor of Pet News 2Day. With a lifetime of experience and a genuine love for animals, I bring a wealth of knowledge and passion to my role. Experience and Expertise Animals have always been a central part of my life. I'm not only the owner of a top-notch dog grooming business in, but I also have a diverse and happy family of my own. We have five adorable dogs, six charming cats, a wise old tortoise, four adorable guinea pigs, two bouncy rabbits, and even a lively flock of chickens. Needless to say, my home is a haven for animal love! Credibility What sets me apart as a credible editor is my hands-on experience and dedication. Through running my grooming business, I've developed a deep understanding of various dog breeds and their needs. I take pride in delivering exceptional grooming services and ensuring each furry client feels comfortable and cared for. Commitment to Animal Welfare But my passion extends beyond my business. Fostering dogs until they find their forever homes is something I'm truly committed to. It's an incredibly rewarding experience, knowing that I'm making a difference in their lives. Additionally, I've volunteered at animal rescue centers across the globe, helping animals in need and gaining a global perspective on animal welfare. Trusted Source I believe that my diverse experiences, from running a successful grooming business to fostering and volunteering, make me a credible editor in the field of pet journalism. I strive to provide accurate and informative content, sharing insights into pet ownership, behavior, and care. My genuine love for animals drives me to be a trusted source for pet-related information, and I'm honored to share my knowledge and passion with readers like you.
    -Advertisement-

    Latest Articles

    -Advertisement-