Friday, March 29, 2024
Friday, March 29, 2024
HomePet NewsBird NewsCretaceous ornithurine supports a neognathous crown bird forefather

Cretaceous ornithurine supports a neognathous crown bird forefather

Date:

Related stories

-Advertisement-spot_img
-- Advertisment --
- Advertisement -
  • Huxley, T. H. On the category of birds; and on the taxonomic worth of the adjustments of specific of the cranial bones observed because class. J. Anat. Physiol. 2, 390 (1868 ).

    Google Scholar.

  • Pycraft, W. P. On the morphology and phylogeny of the Palæognathæ (Ratitæand Crypturi) and Neognathæ (Carinatæ). Trans. Zool. Soc. Lond. 15, 149– 290 (1900 ).

    Google Scholar.

  • Pycraft, W. P. Some points in the morphology of the taste buds of the Neognathæ. Zool. J. Linn. Soc. 28, 343– 357 (1901 ).

    Google Scholar.

  • McDowell, S. The bony taste buds of birds. Part I. The Palaeognathae. Auk 65, 520– 549 (1948 ).

    Google Scholar.

  • Simonetta, A. M. On the mechanical ramifications of the bird skull and their bearing on the development and category of birds. Q. Rev. Biol. 35, 206– 220 (1960 ).

    Google Scholar.

  • Houde, P. W. Paleognathous birds from the early Tertiary of the Northern Hemisphere. Club. Nuttall Ornithol. Club 22, 1– 148 (1988 ).

    Google Scholar.

  • Hu, H. et al. Development of the vomer and its ramifications for cranial kinesis in Paraves. Proc. Natl Acad. Sci. U.S.A. 116, 19571– 19578 (2019 ).

    CAS.
    PubMed.
    PubMed Central.

    Google Scholar.

  • Witmer, L. M. & & Martin, L. D. The primitive functions of the bird taste buds, with unique recommendation to Mesozoic birds. Travaux et Files des Laboratoires de Géologie de Lyon 99, 21– 40 (1987 ).

    Google Scholar.

  • Longrich, N. R., Tokaryk, T. & & Field, D. J. Mass termination of birds at the Cretaceous– Paleogene (K– Pg) border. Proc. Natl Acad. Sci. U.S.A. 108, 15253– 15257 (2011 ).

    CAS.
    PubMed.
    PubMed Central.

    Google Scholar.

  • Zusi, R. L. & & Livezey, B. C. Variation in the os palatinum and its structural relation to the palatum osseum of birds (Aves). Ann. Carnegie Mus. 75, 137– 180 (2006 ).

    Google Scholar.

  • Bell, A. & & Chiappe, L. M. Anatomy of Parahesperornis: evolutionary mosaicism in the Cretaceous Hesperornithiformes (Aves). Life 10, 62 (2020 ).

    PubMed.
    PubMed Central.

    Google Scholar.

  • Torres, C. R., Norell, M. A. & & Clarke, J. A. Bird neurocranial and body mass development throughout the end-Cretaceous mass termination: the bird brain shape left other dinosaurs behind. Sci. Adv. 7, eabg7099 (2021 ).

    PubMed.
    PubMed Central.

    Google Scholar.

  • Bourdon, E. Osteological proof for sibling group relationship in between pseudo-toothed birds (Aves: Odontopterygiformes) and waterfowls (Anseriformes). Naturwissenschaften 92, 586– 591 (2005 ).

    CAS.
    PubMed.

    Google Scholar.

  • Mayr, G. Cenozoic secret birds– on the phylogenetic affinities of bony‐toothed birds (Pelagornithidae). Zool. Scr. 40, 448– 467 (2011 ).

    Google Scholar.

  • Mayr, G., De Pietri, V. L., Love, L., Mannering, A. & & Scofield, R. P. Oldest, tiniest and phylogenetically most basal pelagornithid, from the early Paleocene of New Zealand, clarifies the evolutionary history of the biggest flying birds. Pap. Palaeontol. 7, 217– 233 (2019 ).

    Google Scholar.

  • Elżanowski, A. On the function of basipterygoid procedures in some birds. Verh. Anat. Ges. 71, 1303– 1307 (1977 ).

    Google Scholar.

  • Mayr, G. Paleogene Fossil Birds second edn (Springer, 2022).

  • Gingerich, P. D. Skull of Hesperornis and early development of birds. Nature 243, 70– 73 (1973 ).

    Google Scholar.

  • Dyke, G. J. et al. Europe’s last Mesozoic bird. Naturwissenschaften 89, 408– 411 (2002 ).

    CAS.
    PubMed.

    Google Scholar.

  • Vellekoop, J. et al. A brand-new age design and chemostratigraphic structure for the Maastrichtian type location (southeastern Netherlands, northeastern Belgium). Newsl. Stratigr. 2022, 0703 (2022 ).

    Google Scholar.

  • Clarke, J. A. Morphology, phylogenetic taxonomy, and systematics of Ichthyornis and Apatornis (Avialae: Ornithurae). Bull. Am. Mus. Nat. Hist. 2004, 1– 179 (2004 ).

    Google Scholar.

  • Benito, J. et al. 40 New specimens of Ichthyornis offer extraordinary insight into the postcranial morphology of crownward stem group birds. PeerJ 10, e13919 (2022 ).

    Google Scholar.

  • Marsh, O. C. Odontornithes: an Essay on the Extinct Toothed Birds of The United States And Canada: with Thirty-four Plates and Forty Woodcuts. Memoirs of the Peabody Museum of Nature 1 (United States Federal Government Printing Workplace, 1880).

  • Field, D. J. et al. Total Ichthyornis skull lights up mosaic assembly of the bird head. Nature 557, 96– 100 (2018 ).

    CAS.
    PubMed.

    Google Scholar.

  • Witmer, L. M. The craniofacial air sac system of Mesozoic birds (Aves). Zool. J. Linn. Soc. 100, 327– 378 (1990 ).

    Google Scholar.

  • Tahara, R. & & Larsson, H. C. Head pneumatic sinuses in Japanese quail and zebra finch. Zool. J. Linn. Soc. 186, 742– 792 (2019 ).

    Google Scholar.

  • Field, D. J., Benito, J., Chen, A., Jagt, J. W. M. & & Ksepka, D. T. Late Cretaceous neornithine from Europe lights up the origins of crown birds. Nature 579, 397– 401 (2020 ).

    CAS.
    PubMed.

    Google Scholar.

  • Berv, J. S. & & Field, D. J. Genomic signature of a bird Lilliput result throughout the K– Pg termination. Syst. Biol. 67, 1– 13 (2018 ).

    PubMed.

    Google Scholar.

  • Field, D. J. et al. in Pennaraptoran Theropod Dinosaurs: Past Development and New Frontiers Vol. 440 (eds Pittman, M. & & Xu, X. )160– 181 (Publication of the American Museum of Nature, 2020).

  • Field, D. J. et al. Early development of modern-day birds structured by worldwide forest collapse at the end-Cretaceous mass termination. Curr. Biol. 28, 1825– 1831 (2018 ).

    CAS.
    PubMed.

    Google Scholar.

  • Prum, R. O. et al. A detailed phylogeny of birds (Aves) utilizing targeted next-generation DNA sequencing. Nature 526, 569– 573 (2015 ).

    CAS.
    PubMed.

    Google Scholar.

  • Feduccia, A. Dynamite development in Tertiary birds and mammals. Science 267, 637– 638 (1995 ).

    CAS.
    PubMed.

    Google Scholar.

  • Bock, W. J. Kinetics of the bird skull. J. Morphol. 114, 1– 42 (1964 ).

    Google Scholar.

  • Bühler, P., Martin, L. D. & & Witmer, L. M. Cranial kinesis in the Late Cretaceous birds Hesperornis and Parahesperornis. Auk 105, 111– 122 (1988 ).

    Google Scholar.

  • Bout, R. G. & & Zweers, G. A. The function of cranial kinesis in birds. Compensation. Biochem. Physiol. A Mol. Integr. Physiol. 131, 197– 205 (2001 ).

    CAS.
    PubMed.

    Google Scholar.

  • Gussekloo, S. W. & & Bout, R. G. Cranial kinesis in palaeognathous birds. J. Exp. Biol. 208, 3409– 3419 (2005 ).

    PubMed.

    Google Scholar.

  • Lucas, F. A. Notes on the osteology and relationship of the fossil birds of the genera Hesperornis Hargeria Baptornis and Diatryma. Proc. United States Natl Mus. 26, 545– 556 (1903 ).

    Google Scholar.

  • Elzanowski, A. New observations of the skull of Hesperornis with restorations of the bony taste buds and otic area. Postilla 207, 1– 20 (1991 ).

    Google Scholar.

  • Elżanowski, A. Skulls of Gobipteryx (Aves) from the upper Cretaceous of Mongolia. Acta Palaeontol. Pol. 37, 153– 165 (1977 ).

    Google Scholar.

  • Elżanowski, A. & & Wellnhofer, P. Cranial morphology of Archaeopteryx: proof from the seventh skeleton. J. Vertebr. Paleontol. 16, 81– 94 (1996 ).

    Google Scholar.

  • Chiappe, L. M., Norell, M. & & Clark, J. A brand-new skull of Gobipteryx minuta (Aves: Enantiornithes) from the Cretaceous of the Gobi Desert. Am. Mus. Novit. 2001, 1– 15 (2001 ).

    Google Scholar.

  • Zhang, Z., Chiappe, L. M., Han, G. & & Chinsamy, A. A big bird from the Early Cretaceous of China: brand-new details on the skull of enantiornithines. J. Vertebr. Paleontol. 33, 1176– 1189 (2013 ).

    CAS.

    Google Scholar.

  • Xu, L. et al. A brand-new, incredibly maintained, enantiornithine bird from the Upper Cretaceous Qiupa Development of Henan (main China) and convergent development in between enantiornithines and modern-day birds. Geol. Mag. 158, 2087– 2094 (2021 ).

    Google Scholar.

  • Wang, M., Stidham, T. A., Li, Z., Xu, X. & & Zhou, Z. Cretaceous bird with dinosaur skull clarifies bird cranial development. Nat. Commun. 12, 3890 (2021 ).

    CAS.
    PubMed.
    PubMed Central.

    Google Scholar.

  • De Beer, S. G. The development of ratites. Bull. Brit. Mus. Nat. Hist. Zool. 4, 59– 70 (1956 ).

    Google Scholar.

  • Maxwell, E. E. Relative ossification and advancement of the skull in palaeognathous birds (Aves: Palaeognathae). Zool. J. Linn. Soc. 156, 184– 200 (2009 ).

    Google Scholar.

  • Worthwhile, T. H., Degrange, F. J., Handley, W. D. & & Lee, M. S. The development of huge flightless birds and unique phylogenetic relationships for extinct fowl (Aves, Galloanseres). R. Soc. Open Sci. 4, 170975 (2017 ).

    PubMed.
    PubMed Central.

    Google Scholar.

  • Dyke, G. J., Schulp, A. S. & & Jagt, J. W. Bird stays from the Maastrichtian type location (Late Cretaceous). Neth. J. Geosci. 87, 353– 358 (2008 ).

    Google Scholar.

  • Dumont, M. et al. Synchrotron imaging of dentition offers insights into the biology of Hesperornis and Ichthyornis, the “last” toothed birds. BMC Evol. Biol. 16, 178 (2016 ).

    PubMed.
    PubMed Central.

    Google Scholar.

  • Wang, M., Li, Z., Liu, Q. & & Zhou, Z. 2 brand-new early cretaceous ornithuromorph birds offer insights into the taxonomy and divergence of Yanornithidae (Aves: Ornithothoraces). J. Syst. Paleontol. 18, 1805– 1827 (2020 ).

    Google Scholar.

  • Bell, A. & & Chiappe, L. M. A species-level phylogeny of the Cretaceous Hesperornithiformes (Aves: Ornithuromorpha): ramifications for body size development among the earliest diving birds. J. Syst. Paleontol. 14, 239– 251 (2016 ).

    Google Scholar.

  • Bell, A. & & Chiappe, L. M. The Hesperornithiformes: an evaluation of the variety, circulation, and ecology of the earliest diving birds. Variety 14, 267 (2022 ).

    Google Scholar.

  • Tanaka, T., Kobayashi, Y., Kurihara, K. I., Fiorillo, A. R. & & Kano, M. The oldest Asian hesperornithiform from the Upper Cretaceous of Japan, and the phylogenetic reassessment of Hesperornithiformes. J. Syst. Paleontol. 16, 689– 709 (2018 ).

    Google Scholar.

  • Goloboff, P. A. & & Catalano, S. A. TNT variation 1.5, consisting of a complete application of phylogenetic morphometrics. Cladistics 32, 221– 238 (2016 ).

    PubMed.

    Google Scholar.

  • Ronquist, F. et al. MrBayes 3.2: effective Bayesian phylogenetic reasoning and design option throughout a big design area. Syst. Biol. 61, 539– 542 (2012 ).

    PubMed.
    PubMed Central.

    Google Scholar.

  • Miller, M. A., Pfeiffer, W. & & Schwartz, T. Creating the CIPRES Science Entrance for reasoning of big phylogenetic trees. In 2010 Entrance Computing Environments Workshop (GCE) pp. 1– 8 (IEEE, 2010).

  • Lewis, P. O. A possibility technique to approximating phylogeny from discrete morphological character information. Syst. Biol. 50, 913– 925 (2001 ).

    CAS.
    PubMed.

    Google Scholar.

  • Wang, M., O’Connor, J. K., Pan, Y. & & Zhou, Z. An unusual Early Cretaceous enantiornithine bird with special crural plumes and an ornithuromorph plough-shaped pygostyle. Nat. Commun. 8, 14141 (2017 ).

    CAS.
    PubMed.
    PubMed Central.

    Google Scholar.

  • Atterholt, J., Hutchison, J. H. & & O’Connor, J. K. The most total enantiornithine from The United States and Canada and a phylogenetic analysis of the Avisauridae. PeerJ 6, e5910 (2018 ).

    PubMed.
    PubMed Central.

    Google Scholar.

  • O’Connor, J. K., Chiappe, L. M. & & Bell, A. in Living Dinosaurs: the Evolutionary History of Modern Birds (eds Dyke, G. J. & & Kaiser, G.) 39– 114 (Wiley-Blackwell, 2011).

  • O’Connor, P. M. et al. Late Cretaceous bird from Madagascar exposes special advancement of beaks. Nature 588, 272– 276 (2020 ).

    PubMed.

    Google Scholar.

  • Zelenkov, N. V., Averianov, A. O. & & Popov, E. V. An Ichthyornis– like bird from the earliest Late Cretaceous (Cenomanian) of European Russia. Cretaceous Res. 75, 94– 100 (2017 ).

    Google Scholar.

  • Mohsen, A., Hirayama, R., AbdelGawad, M., Sileem, A. & & Aly, M. in Journal of Vertebrate Paleontology, Program and Abstracts. Society of Vertebrate Paleontology 80 (2020 ).

  • Olson, S. L. et al. The anseriform relationships of Anatalavis Olson and Parris (Anseranatidae), with a brand-new types from the Lower Eocene London Clay. Smithson. Contrib. Paleobiol. 89, 231– 243 (1999 ).

    Google Scholar.

  • Harrison, J. O. & & Walker, C. A. An evaluation of the bony-toothed birds (Odontopterygiformes): with descriptions of some brand-new types. Tertiary Res. Unique Pap. 2, 1– 62 (1976 ).

    Google Scholar.

  • Bourdon, E., Amaghzaz, M. & & Bouya, B. Pseudotoothed birds (Aves, Odontopterygiformes) from the early Tertiary of Morocco. Am. Mus. Novit. 2010, 1– 71 (2010 ).

    Google Scholar.

  • Adams, D. C., Collyer, M., Kaliontzopoulou, A. & & Sherratt, E. Geomorph: software application for geometric morphometric analyses. R bundle variation 4.0. 2021. (2021 ).

  • R Core Group. R: A Language and Environment for Analytical Computing http://www.R-project.org/ (R Structure for Statistical Computing, 2020).

  • Bjarnason, A. & & Benson, R. A 3D geometric morphometric dataset measuring skeletal variation in birds. MorphoMuseuM 7, e125 (2021 ).

    Google Scholar.

  • Zelditch, M. L., Swiderski, D. L. & & Sheets, H. D. Geometric Morphometrics for Biologists: a Guide (Academic Press, 2004).

  • Foth, C., Hedrick, B. P. & & Ezcurra, M. D. Cranial ontogenetic variation in early saurischians and the function of heterochrony in the diversity of predatory dinosaurs. PeerJ 4, e1589 (2016 ).

    PubMed.
    PubMed Central.

    Google Scholar.

  • Field, D. J., Lynner, C., Brown, C. & & Darroch, S. A. Skeletal correlates for body mass evaluation in modern-day and fossil flying birds. PLoS ONE 8, e82000 (2013 ).

    PubMed.
    PubMed Central.

    Google Scholar.

  • Dunning Jr, J. B. CRC Handbook of Bird Body Masses (CRC Press, 2007).

  • - Advertisement -
    Pet News 2Day
    Pet News 2Dayhttps://petnews2day.com
    About the editor Hey there! I'm proud to be the editor of Pet News 2Day. With a lifetime of experience and a genuine love for animals, I bring a wealth of knowledge and passion to my role. Experience and Expertise Animals have always been a central part of my life. I'm not only the owner of a top-notch dog grooming business in, but I also have a diverse and happy family of my own. We have five adorable dogs, six charming cats, a wise old tortoise, four adorable guinea pigs, two bouncy rabbits, and even a lively flock of chickens. Needless to say, my home is a haven for animal love! Credibility What sets me apart as a credible editor is my hands-on experience and dedication. Through running my grooming business, I've developed a deep understanding of various dog breeds and their needs. I take pride in delivering exceptional grooming services and ensuring each furry client feels comfortable and cared for. Commitment to Animal Welfare But my passion extends beyond my business. Fostering dogs until they find their forever homes is something I'm truly committed to. It's an incredibly rewarding experience, knowing that I'm making a difference in their lives. Additionally, I've volunteered at animal rescue centers across the globe, helping animals in need and gaining a global perspective on animal welfare. Trusted Source I believe that my diverse experiences, from running a successful grooming business to fostering and volunteering, make me a credible editor in the field of pet journalism. I strive to provide accurate and informative content, sharing insights into pet ownership, behavior, and care. My genuine love for animals drives me to be a trusted source for pet-related information, and I'm honored to share my knowledge and passion with readers like you.
    -Advertisement-

    Latest Articles

    -Advertisement-

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here
    Captcha verification failed!
    CAPTCHA user score failed. Please contact us!