Saturday, April 20, 2024
Saturday, April 20, 2024
HomePet Industry NewsPet Travel NewsAdvancing life process sustainability of fabrics through technological developments

Advancing life process sustainability of fabrics through technological developments

Date:

Related stories

-Advertisement-spot_img
-- Advertisment --
- Advertisement -
  • Alberghini, M. et al. Sustainable polyethylene materials with crafted wetness transportation for passive cooling. Nat. Sustain. 4, 715– 724 (2021 ).

    Post.

    Google Scholar.

  • Singh, R. P., Mishra, S. & & Das, A. P. Synthetic microfibers: contamination toxicity and removal. Chemosphere https://doi.org/10.1016/j.chemosphere.2020.127199 (2020 ).

  • Borrelle, S. B. et al. Why we require a global contract on marine plastic contamination. Proc. Natl Acad. Sci. U.S.A. 114, 9994– 9997 (2017 ).

    Post.
    CAS.

    Google Scholar.

  • DelRe, C. et al. Near-complete depolymerization of polyesters with nano-dispersed enzymes. Nature 592, 558– 563 (2021 ).

    Post.
    CAS.

    Google Scholar.

  • Sousa, A. F. et al. Biobased polyesters and other polymers from 2,5-furandicarboxylic acid: a homage to furan excellency. Polym. Chem. 6, 5961– 5983 (2015 ).

    Post.
    CAS.

    Google Scholar.

  • Guo, Z., Eriksson, M., Motte, H. D. L. & & Adolfsson, E. Circular recycling of polyester fabric waste utilizing a sustainable driver. J. Clean. Prod https://doi.org/10.1016/j.jclepro.2020.124579 (2021 ).

  • Chamas, A. et al. Deterioration rates of plastics in the environment. ACS Sustain. Chem. Eng. 8, 3494– 3511 (2020 ).

    Post.
    CAS.

    Google Scholar.

  • Bataineh, K. M. Life-cycle evaluation of recycling postconsumer high-density polyethylene and polyethylene terephthalate. Adv. Civil Eng https://doi.org/10.1155/2020/8905431 (2020 ).

  • Häußler, M., Eck, M., Rothauer, D. & & Mecking, S. Closed-loop recycling of polyethylene-like products. Nature 590, 423– 427 (2021 ).

    Post.

    Google Scholar.

  • Shieh, P. et al. Cleavable comonomers make it possible for degradable, recyclable thermoset plastics. Nature 583, 542– 547 (2020 ).

    Post.
    CAS.

    Google Scholar.

  • Rahman, M. H. & & Bhoi, P. R. An introduction of non-biodegradable bioplastics. J. Clean. Prod. https://doi.org/10.1016/j.jclepro.2021.126218 (2021 ).

  • Cucina, M., de Nisi, P., Tambone, F. & & Adani, F. The function of waste management in decreasing bioplastics’ leak into the environment: an evaluation. Bioresour. Technol https://doi.org/10.1016/j.biortech.2021.125459 (2021 ).

  • Hufenus, R., Yan, Y., Dauner, M. & & Kikutani, T. Melt-spun fibers for fabric applications. Products 13, 4298 (2020 ).

    Post.
    CAS.

    Google Scholar.

  • Yang, Y. et al. Poly( lactic acid) fibers, yarns and materials: production, homes and applications. Text. Res. J. 91, 1641– 1669 (2021 ).

    Post.
    CAS.

    Google Scholar.

  • Kopf, S., Åkesson, D. & & Skrifvars, M. Fabric fiber production of biopolymers– an evaluation of spinning methods for polyhydroxyalkanoates in biomedical applications. Polym. Rev https://doi.org/10.1080/15583724.2022.2076693 (2022 ).

  • Khan, A. et al. Nitrogen nutrition in cotton and control methods for greenhouse gas emissions: an evaluation. Environ. Sci. Pollut. Res. 24, 23471– 23487 (2017 ).

    Post.
    CAS.

    Google Scholar.

  • Deguine, J. P., Ferron, P. & & Russell, D. Sustainable bug management for cotton production. An evaluation. Agron. Sustain. Dev. 28, 113– 137 (2008 ).

    Post.

    Google Scholar.

  • Xiao, Y. & & Wu, K. Current development on the interaction in between bugs and Bacillus thuringiensis crops. Phil. Trans. R. Soc. B https://doi.org/10.1098/rstb.2018.0316 (2019 ).

  • Veres, A. et al. An upgrade of the Worldwide Integrated Evaluation (WIA) on systemic pesticides. Part 4: options in significant cropping systems. Environ. Sci. Pollut. Res. 27, 29867– 29899 (2020 ).

    Post.
    CAS.

    Google Scholar.

  • Serrano-Ruiz, H., Martin-Closas, L. & & Pelacho, A. M. Biodegradable plastic mulches: influence on the farming biotic environment. Sci. Overall Environ https://doi.org/10.1016/j.scitotenv.2020.141228 (2021 ).

  • Bi, S. et al. Naturally degradable polyester covered mulch paper for regulated release of fertilizer. J. Clean. Prod https://doi.org/10.1016/j.jclepro.2021.126348 (2021 ).

  • Dai, J., Kong, X., Zhang, D., Li, W. & & Dong, H. Technologies and theoretical basis of light and streamlined cotton growing in China. Field Crops Res. 214, 142– 148 (2017 ).

    Post.

    Google Scholar.

  • Felgueiras, C., Azoia, N. G., Gonçalves, C., Gama, M. & & Dourado, F. Trends on the cellulose-based fabrics: basic materials and innovations. Front. Bioeng. Biotechnol https://doi.org/10.3389/fbioe.2021.608826 (2021 ).

  • Biodiversity in Bamboo Forests: A Policy Viewpoint for Long Term Sustainability (International Network for Bamboo and Rattan, 2010).

  • Tune, X. et al. Carbon sequestration by Chinese bamboo forests and their eco-friendly advantages: evaluation of capacity, issues, and future obstacles. Environ. Rev. 19, 418– 428 (2011 ).

    Post.
    CAS.

    Google Scholar.

  • Sayyed, A. J., Deshmukh, N. A. & & Pinjari, D. V. A critique of producing procedures utilized in regenerated cellulosic fibers: viscose, cellulose acetate, cuprammonium, LiCl/DMAc, ionic liquids, and NMMO based lyocell. Cellulose 26, 2913– 2940 (2019 ).

    Post.
    CAS.

    Google Scholar.

  • Beckwith, A. L., Borenstein, J. T. & & Velásquez-García, L. F. Tunable plant-based products through in vitro cell culture utilizing a Zinnia elegans design. J. Clean. Prod. 288, 125571 (2021 ).

    Post.
    CAS.

    Google Scholar.

  • Koç, E. & & Kaplan, E. An examination on energy usage in yarn production with unique recommendation to call spinning. Fibres Text. East. Eur. 15, 18– 24 (2007 ).

    Google Scholar.

  • Yin, R., Tao, X. & & Jasper, W. A theoretical design to examine the efficiency of cellulose yarns constrained to push a moving strong cylinder. Cellulose 27, 9683– 9698 (2020 ).

    Post.
    CAS.

    Google Scholar.

  • Yang, K., Tao, X. M., Xu, B. G. & & Lam, J. Structure and homes of low twist short-staple songs call spun yarns. Text. Res. J. 77, 675– 685 (2007 ).

    Post.
    CAS.

    Google Scholar.

  • Ying, G. et al. Examination and examination on great Upland cotton mix yarns made by the customized ring spinning system. Text. Res. J. 85, 1355– 1366 (2015 ).

    Post.
    CAS.

    Google Scholar.

  • Xue, J., Wu, T., Dai, Y. & & Xia, Y. Electrospinning and electrospun nanofibers: approaches, products, and applications. Chem. Rev. 119, 5298– 5415 (2019 ).

    Post.
    CAS.

    Google Scholar.

  • Hasanbeigi, A. Energy-Efficiency Enhancement Opportunities for the Fabric Market (Lawrence Berkeley National Lab, 2010).

  • Münkel, A., Gloy, Y. S. & & Gries, T. Advancement and screening of a relay nozzle principle for air-jet weaving. IOP Conf. Seri. Mate. Sci. Eng. 254, 132003– 132008 (2017 ).

    Post.

    Google Scholar.

  • Jordan, J. V., Kemper, M., Renkens, W. & & Gloy, Y.-S. Magnetic weft insertion for weaving makers. Text. Res. J. 88, 1677– 1685 (2018 ).

    Post.
    CAS.

    Google Scholar.

  • Xiang, W. et al. Foam processing of fibers as a sustainable option to wet-laying: fiber web homes and trigger– result relations. ACS Sustain. Chem. Eng. 6, 14423– 14431 (2018 ).

    Post.
    CAS.

    Google Scholar.

  • Du, C., Meng, Z., Sun, Y. & & Yu, J. Optimum style of the horn equipment for rotary three-dimensional intertwining device. J. Text. Inst https://doi.org/10.1080/00405000.2020.1716530 (2020 ).

  • Yin, R. et al. Cleaner production of mulberry spun silk yarns through a reduced and gassing-free production path. J. Clean. Prod. 278, 123690 (2021 ).

    Post.

    Google Scholar.

  • Jiang, G., Zhou, M., Zheng, B., Zheng, P. & & Liu, H. Research study development of green and low-carbon knitting innovation. J. Text.Res. 43, 67– 73 (2022 ).

    Google Scholar.

  • Lozano, L. M. et al. Optical engineering of polymer products and composites for synchronised color and thermal management. Opt. Mater. Express 9, 1990– 2005 (2019 ).

    Post.
    CAS.

    Google Scholar.

  • Ruiz-Clavijo, A. et al. Engineering a complete range of structural colors in all-dielectric mesoporous network metamaterials. ACS Photon. 5, 2120– 2128 (2018 ).

    Post.
    CAS.

    Google Scholar.

  • Banchero, M. Current advances in supercritical fluid dyeing. Color. Technol. 136, 317– 335 (2020 ).

    Post.
    CAS.

    Google Scholar.

  • Hu, E., Shang, S., Tao, X., Jiang, S. & & Chiu, K.-L. Reducing freshwater usage in the wash-off action in fabric reactive coloring by catalytic ozonation with carbon aerogel hosted bimetallic driver. Polymers 10, 193 (2018 ).

    Post.

    Google Scholar.

  • Hu, E., Shang, S., Tao, X.-M., Jiang, S. & & Chiu, K.-L. Regrowth and reuse of extremely contaminating fabric dyeing effluents through catalytic ozonation with carbon aerogel drivers. J. Clean. Prod. 137, 1055– 1065 (2016 ).

    Post.
    CAS.

    Google Scholar.

  • Tune, Y. et al. Green and effective inkjet printing of cotton materials utilizing reactive dye@copolymer nanospheres. A/c Appl. Mater. User Interfaces 12, 45281– 45295 (2020 ).

    Post.
    CAS.

    Google Scholar.

  • Eid, B. M. & & Ibrahim, N. A. Current advancements in sustainable completing of cellulosic fabrics utilizing biotechnology. J. Clean. Prod https://doi.org/10.1016/j.jclepro.2020.124701 (2021 ).

  • Udhayamarthandan, S. & & Srinivasan, J. Integrated enzymatic and chemical treatment for single-stage preparation of cotton materials. Text. Res. J. 89, 3937– 3948 (2019 ).

    Post.
    CAS.

    Google Scholar.

  • Nambela, L., Haule, L. V. & & Mgani, Q. An evaluation on source, chemistry, green synthesis and application of fabric colorants. J. Clean. Prod https://doi.org/10.1016/j.jclepro.2019.119036 (2020 ).

  • Phan, K. et al. Non-food applications of natural dyes drawn out from agro-food residues: a critique. J. Clean. Prod https://doi.org/10.1016/j.jclepro.2021.126920 (2021 ).

  • Boriskina, S. V. Optics on the go. Choose. Photon. News 28, 34– 41 (2017 ).

    Google Scholar.

  • Gauvreau, B. et al. Color-changing and color-tunable photonic bandgap fiber fabrics. Opt. Express 16, 15677– 15693 (2008 ).

    Post.
    CAS.

    Google Scholar.

  • Hasanbeigi, A. & & Cost, L. A technical evaluation of emerging innovations for energy and water effectiveness and contamination decrease in the fabric market. J. Clean. Prod. 95, 30– 44 (2015 ).

    Post.
    CAS.

    Google Scholar.

  • Muensterman, D. J. et al. Personality of fluorine on brand-new firemen turnout equipment. Environ. Sci. Technol. 56, 974– 983 (2022 ).

    Post.
    CAS.

    Google Scholar.

  • Hill, P. J., Taylor, M., Goswami, P. & & Blackburn, R. S. Alternative of PFAS chemistry in outside clothing and the influence on repellency efficiency. Chemosphere 181, 500– 507 (2017 ).

    Post.
    CAS.

    Google Scholar.

  • Konstantinou, I. K. & & Albanis, T. A. TiO 2– helped photocatalytic deterioration of azo dyes in liquid service: kinetic and mechanistic examinations: an evaluation. Appl. Catal. B 49, 1– 14 (2004 ).

    Post.
    CAS.

    Google Scholar.

  • Yaseen, D. & & Scholz, M. Fabric color wastewater attributes and constituents of artificial effluents: a critique. Int. J. Environ. Sci. Technol. 16, 1193– 1226 (2019 ).

    Post.
    CAS.

    Google Scholar.

  • Sondhi, S. in Sustainable Technologies for Style and Textiles (ed. Nayak, R.) 327– 341 (Elsevier, 2020).

  • Wang, B., Su, H. & & Zhang, B. Hydrodynamic cavitation as an appealing path for wastewater treatment– an evaluation. Chem. Eng. J. 412, 128685 (2021 ).

    Post.
    CAS.

    Google Scholar.

  • Bhatia, D., Sharma, N. R., Singh, J. & & Kanwar, R. S. Biological approaches for fabric color elimination from wastewater: an evaluation. Crit. Rev. Environ. Sci. Technol. 47, 1836– 1876 (2017 ).

    Post.
    CAS.

    Google Scholar.

  • Götz, T. & & Tholen, L. Stock design based bottom-up accounting for cleaning makers: around the world energy, water and greenhouse gas conserving capacities 2010– 2030. Tenside Surfactants Deterg. 53, 410– 416 (2016 ).

    Post.

    Google Scholar.

  • Koohsaryan, E., Anbia, M. & & Maghsoodlu, M. Application of zeolites as non-phosphate cleaning agent contractors: an evaluation. J. Environ. Chem. Eng https://doi.org/10.1016/j.jece.2020.104287 (2020 ).

  • Joondan, N., Angundhooa, H. D., Bhowon, M. G., Caumul, P. & & Laulloo, S. J. Cleaning agent homes of coconut oil obtained N-acyl prolinate surfactant and the in silico research studies on its efficiency versus SARS-CoV-2 (COVID-19). Tenside Surfactants Deterg. 57, 361– 374 (2020 ).

    Post.
    CAS.

    Google Scholar.

  • Farias, C. B. B. et al. Production of green surfactants: market potential customers. Electron. J. Biotechnol. 51, 28– 39 (2021 ).

    Post.
    CAS.

    Google Scholar.

  • Jimoh, A. A. & & Lin, J. Biosurfactant: a brand-new frontier for greener innovation and ecological sustainability. Ecotoxicol. Environ. Security https://doi.org/10.1016/j.ecoenv.2019.109607 (2019 ).

  • Nondurable Product: Product-Specific Data (EPA, 2021); https://www.epa.gov/facts-and-figures-about-materials-waste-and-recycling/nondurable-goods-product-specific-data

  • Ashby, M. F. Products and Sustainable Advancement (Butterworth-Heinemann, 2016).

  • A Brand-new Textiles Economy: Redesigning Style’s Future (Ellen Macarthur Structure, 2017); https://www.ellenmacarthurfoundation.org/publications/a-new-textiles-economy-redesigning-fashions-future

  • Esteve-Turrillas, F. A. & & de la Guardia, M. Environmental effect of Recover cotton in fabric market. Resour. Conserv. Recycl. 116, 107– 115 (2017 ).

    Post.

    Google Scholar.

  • Beltrán, F. R., Lorenzo, V., Acosta, J., de la Orden, M. U. & & Martínez Urreaga, J. Result of simulated mechanical recycling procedures on the structure and homes of poly( lactic acid). J. Environ. Handle. 216, 25– 31 (2018 ).

  • Beltrán, F. R., Infante, C., de la Orden, M. U. & & Martínez Urreaga, J. Mechanical recycling of poly( lactic acid): examination of a chain extender and a peroxide as ingredients for updating the recycled plastic. J. Clean. Prod. 219, 46– 56 (2019 ).

    Post.

    Google Scholar.

  • Yousef, S. et al. A brand-new technique for utilizing fabric waste as a sustainable source of recuperated cotton. Resour. Conserv. Recycl. 145, 359– 369 (2019 ).

    Post.

    Google Scholar.

  • Haslinger, S., Hummel, M., Anghelescu-Hakala, A., Määttänen, M. & & Sixta, H. Upcycling of cotton polyester mixed fabric waste to brand-new manufactured cellulose fibers. Waste Manage. 97, 88– 96 (2019 ).

    Post.
    CAS.

    Google Scholar.

  • Quartinello, F. et al. Extremely selective enzymatic healing of foundation from wool– cotton– polyester fabric waste blends. Polymers 10, 1107 (2018 ).

    Post.

    Google Scholar.

  • Lv, F. et al. Recycling of waste nylon 6/spandex mixed materials by melt processing. Composites B 77, 232– 237 (2015 ).

    Post.
    CAS.

    Google Scholar.

  • Ma, Z. et al. Naturally degradable polyurethane ureas with variable polyester or polycarbonate soft sectors: impacts of crystallinity, molecular weight, and structure on mechanical homes. Biomacromolecules 12, 3265– 3274 (2011 ).

    Post.
    CAS.

    Google Scholar.

  • Sandvik, I. M. & & Stubbs, W. Circular style supply chain through textile-to-textile recycling. J. Style Mark. Handle. 23, 366– 381 (2019 ).

    Post.

    Google Scholar.

  • Sodhi, M. & & Knight, W. A. Item style for disassembly and bulk recycling. CIRP Ann. Manuf. Technol. 47, 115– 118 (1998 ).

    Post.

    Google Scholar.

  • - Advertisement -
    Pet News 2Day
    Pet News 2Dayhttps://petnews2day.com
    About the editor Hey there! I'm proud to be the editor of Pet News 2Day. With a lifetime of experience and a genuine love for animals, I bring a wealth of knowledge and passion to my role. Experience and Expertise Animals have always been a central part of my life. I'm not only the owner of a top-notch dog grooming business in, but I also have a diverse and happy family of my own. We have five adorable dogs, six charming cats, a wise old tortoise, four adorable guinea pigs, two bouncy rabbits, and even a lively flock of chickens. Needless to say, my home is a haven for animal love! Credibility What sets me apart as a credible editor is my hands-on experience and dedication. Through running my grooming business, I've developed a deep understanding of various dog breeds and their needs. I take pride in delivering exceptional grooming services and ensuring each furry client feels comfortable and cared for. Commitment to Animal Welfare But my passion extends beyond my business. Fostering dogs until they find their forever homes is something I'm truly committed to. It's an incredibly rewarding experience, knowing that I'm making a difference in their lives. Additionally, I've volunteered at animal rescue centers across the globe, helping animals in need and gaining a global perspective on animal welfare. Trusted Source I believe that my diverse experiences, from running a successful grooming business to fostering and volunteering, make me a credible editor in the field of pet journalism. I strive to provide accurate and informative content, sharing insights into pet ownership, behavior, and care. My genuine love for animals drives me to be a trusted source for pet-related information, and I'm honored to share my knowledge and passion with readers like you.
    -Advertisement-

    Latest Articles

    -Advertisement-

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here
    Captcha verification failed!
    CAPTCHA user score failed. Please contact us!